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ABSTRACT

This thesis investigates the implication of empirical grounded electric power mar-

ket facts using multiple methodologies, including market and contract design, analytic

method, statistical method, and agent-based simulation method. Basically, this thesis

focuses on centrally-managed electric power markets.

European and U.S. electricity sectors have undergone substantial restructuring over

the past twenty years. They have devolved from highly regulated systems operated

by vertically integrated utilities to relatively decentralized systems based more fully on

market valuation and allocation mechanisms.

These restructuring efforts have been driven by a desire to ensure efficient energy

production and utilization, reliable energy supplies, affordable energy prices, and effective

rules and regulations for environmental protection. In keeping with the latter goal, a

dramatic change is taking place in energy mixes: namely, a rapid penetration of variable

energy resources combined with a movement away from traditional thermal generation.

Variable energy resources (VERs) are renewable energy resources, such as wind and

solar power, whose generation cannot be closely controlled to match changes in load

or to meet other system requirements. Consequently, the integration of VERs tends

to increase the volatility of net load (ie, load minus as-available generation) as well as

the frequency of strong ramp events. Flexibility in service provision by other types of

resources then becomes increasingly important to maintain the reliability and efficiency

of power system operations.

To accommodate increased VER penetration, TSOs and ISOs have introduced major

changes in their market rules and operational procedures. These changes have included
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new product definitions to enhance load-following capability (eg, ramping products),

revised market eligibility requirements to encourage greater VER participation, and the

introduction of capacity markets in an attempt to ensure sufficient thermal generation

as a backstop for the intermittency of VER generation.

Also, CO2 emission issues are increasing important in electric power markets. In the

U.S., the largest source of CO2 emissions is the electricity sector, which was responsible

for 32% of total emissions in 2012. The Obama Administration proposed a Clean Power

Plan in June 2014; nationwide, by 2030, this plan would achieve approximately 30 percent

of CO2 emission reduction relative to 2005 CO2 emission levels in the power sector. There

are several important issues arising from carbon mitigation options such as a carbon tax

imposition and increase penetration of VERs need to be resolved.

Chapter 2 introduces standardized energy and reserve contracts with swing (flexibil-

ity) in their contractual terms to resolve key issues that have arisen for centrally-managed

wholesale electric power markets with increased penetration of renewable energy re-

sources. Concrete examples are used to demonstrate how the trading of these standard-

ized contracts can be supported by linked forward markets in a manner that permits

efficient real-time balancing of net load subject to system and reserve-requirement con-

straints. Comparisons with existing wholesale electric power markets are given, and key

policy implications are highlighted.

Chapter 3 extends the system pattern short-term forecasting method for power sys-

tems to incorporate non-dispatchable renewable energy, thus permitting the forecasting

of CO2 emissions along with the forecasting of prices, line congestion, and other system

variables. It also develops an empirically-based system pattern transition matrix per-

mitting a dynamic extension of the method. The practical usefulness of the resulting

extended forecasting method is illustrated by means of a 5-bus test system based on data

from the Midcontinent Independent System Operator (MISO).
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Chapter 4 develops a 9-zone test system based on MISO data for application in electric

power market studies. This 9-zone test system models MISO’s original seven midwestern

zones together with two recently-incorporated southern zones operating over a 15-line

AC transmission grid. Generators with different fuel types and capacities submit hourly

supply offers in a day-ahead market (DAM). Load-serving entities submit hourly demand

bids into a day-ahead market in the form of a 24-hour regional load profile. This 9-zone

test system allows a wide range of sensitivity studies. To illustrate the capabilities of

the 9-zone test system, this study undertakes a comparative study of DAM Locational

Marginal Price (LMP) outcomes for MISO prior to and after the integration of the two

southern zones by conducting test-bed simulations for 7-zone and 9-zone test cases based

on MISO data.

Chapter 5 analyzes how the imposition of a carbon tax and the increased penetration

of wind power in such markets could impact CO2 emissions and other key outcomes,

such as energy dispatch, energy prices, market participant profits (by fuel type), and

government tax revenues. Another innovation of this part is that the effects of increases

in a carbon tax and wind power penetration are studied jointly. It is shown, for example,

that CO2 emissions decrease from 0.23% to 6.17% as the carbon tax and the degree of

wind penetration are systematically varied from a base case of zero tax and zero wind.

The profits of coal- and oil-fired generation systematically decrease with increases in

the carbon tax and/or increases in wind penetration, but the profits of other types of

generation exhibit a more complex response. Comparisons with current MISO conditions

are also given, and key policy implications are discussed.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

This thesis investigates the implication of empirical grounded electric power mar-

ket facts using multiple methodologies, including market and contract design, analytic

method, statistical method, and agent-based simulation method. Basically, this thesis

focuses on centrally-managed electric power markets.

European and U.S. electricity sectors have undergone substantial restructuring over

the past twenty years. They have devolved from highly regulated systems operated

by vertically integrated utilities to relatively decentralized systems based more fully on

market valuation and allocation mechanisms.

As part of this restructuring, oversight agencies have been established at several

different levels to encourage cooperation and coordination. The European Network of

Transmission System Operators for Electricity (ENTSO-E), founded in 2008, currently

consists of forty-one Transmission System Operators (TSOs) from thirty-four European

countries; its primary task is to promote the coordinated management of the European

power grid. The U.S. Federal Energy Regulatory Commission (FERC) oversees the

activities of seven Independent System Operators (ISOs), established since the mid-

1990s, that are tasked with managing power system operations in seven U.S. electric

energy regions comprising over 60% of U.S. generating capacity.

These restructuring efforts have been driven by a desire to ensure efficient energy

production and utilization, reliable energy supplies, affordable energy prices, and effective



www.manaraa.com

2

rules and regulations for environmental protection. In keeping with the latter goal, a

dramatic change is taking place in energy mixes: namely, a rapid penetration of variable

energy resources combined with a movement away from traditional thermal generation.

Variable energy resources (VERs) are renewable energy resources, such as wind and

solar power, whose generation cannot be closely controlled to match changes in load

or to meet other system requirements. Consequently, the integration of VERs tends

to increase the volatility of net load (ie, load minus as-available generation) as well as

the frequency of strong ramp events. Flexibility in service provision by other types of

resources then becomes increasingly important to maintain the reliability and efficiency

of power system operations.

To accommodate increased VER penetration, TSOs and ISOs have introduced major

changes in their market rules and operational procedures. These changes have included

new product definitions to enhance load-following capability (eg, ramping products),

revised market eligibility requirements to encourage greater VER participation, and the

introduction of capacity markets in an attempt to ensure sufficient thermal generation

as a backstop for the intermittency of VER generation.

Also, CO2 emission issues are increasing important in electric power markets. In the

U.S., the largest source of CO2 emissions is the electricity sector, which was responsible

for 32% of total emissions in 2012. The Obama Administration proposed a Clean Power

Plan in June 2014; nationwide, by 2030, this plan would achieve approximately 30 percent

of CO2 emission reduction relative to 2005 CO2 emission levels in the power sector. There

are several important issues arising from carbon mitigation options such as a carbon tax

imposition and increase penetration of VERs need to be resolved.

First, current electric power markets need appropriate compensation for flexibility

in service provision. TSO/ISO product definitions are specified in broad rigid terms

(eg, capacity, energy, ramp-rate, regulation, non-spinning reserve) that do not permit

resources to be further differentiated and compensated on the basis of additional valuable
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flexibility in service provision, such as an ability to ramp up and down between minimum

and maximum values over very short time intervals. Second, VERs increase volatility

and uncertainty in electric power markets because VERs are non-dispatchable. When

the penetration of renewable energy reaches relatively high levels, characteristics and

operations of the current power system will be significantly changed and additional costs

will be incurred in order to ensure sufficient resources for system reliability. Third,

carbon tax imposition can change relative generation costs of generators based on carbon

intensities implied by fuel type. This can lead fuel mix changes in current power markets

and affects market participants’ profits. Thus a thorough studies are necessary to resolve

these key issues in electric power markets.

This thesis proposes new contract and market design to attain flexible energy and

service provisions. Also, this thesis develops an improved short term forecasting method

for power market system variables such as dispatch levels, power flows in transmission

lines, and electricity prices with increased penetration of VERs. A 5-bus test case is

used to test the verification of the method. An empirically-based test system is devel-

oped based on data from the Midcontinent Independent System Operator (MISO) for

application in electric power market studies. This test system embed MISO’s rules of

operation and physical attributes such as generation technology, transmission line limits,

and capacity proportions by fuel type. Using this test system, this thesis systematically

analyzes the effects of CO2 reduction options on electric power market key outcomes.

1.2 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 introduces standardized energy and reserve contracts with swing (flexi-

bility) in their contractual terms to resolve key issues that have arisen for centrally-

managed wholesale electric power markets with increased penetration of renewable en-
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ergy resources. Concrete examples are used to demonstrate how the trading of these

standardized contracts can be supported by linked forward markets in a manner that

permits efficient real-time balancing of net load (conventional load - as-available gener-

ation) subject to system and reserve-requirement constraints.

Based on the basic system pattern method, Chapter 3 develops an extended system

pattern method for short-term forecasting of power market performance that: incorpo-

rates non-dispatchable renewable energy and investigates its effects on electric power

markets, broadens the scope of the basic system pattern method to permit short-term

forecasting of CO2 emissions as well as other power system variables and investigate its

applicability for a scenario reduction method, and introduces the concept of empirically-

based system pattern transition matrix and its applicability for status forecasting of

power system variables.

Chapter 4 develops an empirically-based test system based on data from the Mid-

continent Independent System Operator (MISO) for application in electric power market

studies. This test system embeds MISO’s rules of operation, physical attributes of market

generation technology and capacity, transmission constraints, and capacity proportion

by fuel type.

Using the test system developed in Chapter 4, Chapter 5 systematically analyzes the

effects of two treatment factors for CO2 reduction options, a carbon tax imposition and

wind power penetration, on electric power market key outcomes such as CO2 emissions,

generator dispatch levels, costs, revenues and profits, and carbon tax revenues.

Chapter 6 concludes the whole thesis. Key findings and interesting extensions of

each research topic are summarized to illustrate the main contributions of this thesis to

academic literature and practical studies.
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CHAPTER 2. STANDARDIZED CONTRACTS WITH

SWING FOR THE MARKET SUPPORTED

PROCUREMENT OF ENERGY AND RESERVE:

ILLUSTRATIVE EXAMPLES

2.1 Introduction

European and U.S. electricity sectors have undergone substantial restructuring over

the past twenty years. They have devolved from highly regulated systems operated

by vertically integrated utilities to relatively decentralized systems based more fully on

market valuation and allocation mechanisms.

As part of this restructuring, oversight agencies have been established at several

different levels to encourage cooperation and coordination. The European Network of

Transmission System Operators for Electricity (ENTSO-E), founded in 2008, currently

consists of forty-one Transmission System Operators (TSOs) from thirty-four European

countries; its primary task is to promote the coordinated management of the European

power grid [32]. The U.S. Federal Energy Regulatory Commission (FERC) oversees

the activities of seven Independent System Operators (ISOs), established since the mid-

1990s, that are tasked with managing power system operations in seven U.S. electric

energy regions comprising over 60% of U.S. generating capacity [28].

These restructuring efforts have been driven by a desire to ensure efficient energy

production and utilization, reliable energy supplies, affordable energy prices, and effective
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rules and regulations for environmental protection. In keeping with the latter goal, a

dramatic change is taking place in energy mixes: namely, a rapid penetration of variable

energy resources combined with a movement away from traditional thermal generation.

Variable energy resources (VERs) are renewable energy resources, such as wind and

solar power, whose generation cannot be closely controlled to match changes in load

or to meet other system requirements. Consequently, the integration of VERs tends

to increase the volatility of net load (ie, load minus as-available generation) as well as

the frequency of strong ramp events. Flexibility in service provision by other types of

resources then becomes increasingly important to maintain the reliability and efficiency

of power system operations.

To accommodate increased VER penetration, TSOs and ISOs have introduced major

changes in their market rules and operational procedures [31, 47, 29, 74]. These changes

have included new product definitions to enhance load-following capability (eg, ramping

products), revised market eligibility requirements to encourage greater VER participa-

tion, and the introduction of capacity markets in an attempt to ensure sufficient thermal

generation as a backstop for the intermittency of VER generation.

Nevertheless, several important issues arising from increased VER penetration still

need to be resolved. One key issue is that energy and reserve products are variously

defined and compensated across the different energy regions; see, eg, Ellison et al. [30].

This makes it difficult to compare and evaluate the efficiency and fairness of system

operations across these regions.

A second key issue is appropriate compensation for flexibility in service provision.

TSO/ISO product definitions are specified in broad rigid terms (eg, capacity, energy,

ramp-rate, regulation, non-spinning reserve) that do not permit resources to be further

differentiated and compensated on the basis of additional valuable flexibility in service

provision, such as an ability to ramp up and down between minimum and maximum

values over very short time intervals.
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A third key issue is that attempts to accommodate new products have led to the

introduction of out-of-market (OOM) compensation processes. In 2011 FERC issued

Order 755 to address OOM payment problems for one particular product category in

U.S. ISO-managed wholesale power markets: namely, regulation with different abilities

to follow electronic dispatch signals with high accuracy [38]. However, given its limited

scope, Order 755 does not fully eliminate the need in these markets to resort to OOM

processes. As stressed by Bushnell [14], the additional complexity resulting from OOM

compensation processes provides increased opportunities for market participants to gain

unfair profit advantages through strategic behaviors.

In response to these issues, a group of researchers sponsored by Sandia National

Laboratories prepared a report [86] recommending that energy and reserve contracts be

standardized in firm and option forms permitting separate pricing for service availability

and for real-time service performance, and that the trading of these contracts be sup-

ported by a linked sequence of forward markets whose design is also standardized. This

report builds on important earlier work by Bidwell [8], Bunn [13], Chao and Wilson [18],

and Oren [76], who stress the relevance of options and two-part pricing for electricity

markets.

The current study uses concrete numerical examples to explore the policy implications

of the recommendations in Tesfatsion et al. [86]. In Section 2.2 we present a general

template for a Standardized Contract (SC) with swing (flexibility) in its contractual

terms, together with an illustrative SC example. We also outline in broad terms how the

trading of SCs can be supported by linked centrally-managed day-ahead and real-time

markets. In Section 2.3 and Section 2.4 we present our main results: namely, examples

demonstrating how our proposed SC system, implemented via linked day-ahead and

real-time markets, permits efficient real-time balancing of net load subject to system

and reserve-requirement constraints.
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Comparisons of our proposed SC system with existing European and U.S. wholesale

power market operations, standardized power contracts, pricing mechanisms, and VER

initiatives are provided in Sections 2.5.1-2.5.4. In Section 2.5.5 we discuss how our SC

system provides a robust-control approach to the handling of uncertain net load that

avoids the need to specify detailed scenarios with associated probabilities, a common

requirement of standard stochastic control approaches. In Section 2.5.6 we conjecture

how our proposed SC system, extended to longer-term forward markets, could help to

provide better incentives for thermal generation capacity investment as a backstop for

the intermittency of VER generation by facilitating the resolution of merit-order and

missing-money problems.

Throughout Sections 2.2-2.5 the following key policy implications of our proposed SC

system are highlighted:

• permits full market-based compensation for availability and performance

• facilitates a level playing field for market participation

• facilitates co-optimization of energy and reserve markets

• supports forward-market trading of energy and reserve

• permits resource providers to offer flexible service availability

• provides system operators with real-time flexibility in service usage

• facilitates accurate load forecasting and following of dispatch signals

• permits resources to internally manage UC and capacity constraints

• permits the robust-control management of uncertain net load

• eliminates the need for OOM payment adjustments

• reduces the complexity of market rules
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The concluding Section 2.6 provides a concise summary discussion of each of these policy

implications.

2.2 Proposed Standardized Contract System

2.2.1 General Form of a Standardized Contract

Energy refers to the actual generation of electrical energy, whereas reserve refers to

generation-capacity availability. Four standardized contracts are proposed in Tesfatsion

et al. [86] to facilitate energy and reserve trading: namely, firm contracts (FCs) and

option contracts (OCs) taking either fixed or swing form.

An FC is a non-contingent contract that requires specific performance from both

counterparties. It obligates the holder to procure services from the issuer, and the issuer

to deliver these services, under the contractually specified terms of the FC. In contrast,

an OC gives the holder the right, but not the obligation, to procure services from the

issuer under contractually specified terms. The right can be activated by exercise of the

OC at a contractually permitted exercise time. Once exercised, an OC imposes specific

performance obligations on both counterparties. That is, as for an FC, an exercised OC

obligates the holder to procure services from the issuer, and the issuer to deliver these

services, under the contractually specified terms of the OC.

An FC or OC is a fixed contract if each of its contractual terms is designated as a

single possible value. An FC or OC is a swing contract if at least one of its contractual

terms is designated as a set of possible values, thus permitting some degree of flexibility

in its implementation. A fixed FC is a block-energy contract if its contractual terms

obligate the issuer to maintain a specified constant power level during a specified time

interval.

As depicted in Fig. 2.1, fixed/swing OCs, fixed/swing FCs, and block-energy contracts

are all special cases of swing OCs. A swing OC reduces to a fixed OC if each of its
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contractual terms is a single point value. A swing OC reduces to a swing FC if its

permitted exercise times consist of a single time point that coincides with the contract

procurement time. A swing FC reduces to a fixed FC if each of its contractual terms is

a single point value.

Figure 2.1: Hierarchical structure of contracts

Hereafter, this study focuses on Standardized Contracts (SCs) in swing-OC form for

the flexible provision of energy and reserve services. For concreteness, we next present a

template for an SC that provides seven basic types of services for a particular operating

hour: delivery location; down/up direction; exercise time; power-begin time; power-end

time; down/up ramp rate; and power level. We illustrate swing in five of these service

types by depicting their sets of possible values as intervals.1

1SCs can take much more general forms than illustrated in the current study. For example, SCs
can include other types of services such as voltage control, reactive power support, and energy storage
capacity; swing can be present in any of these services; swing possible value sets do not need to be in
interval form; and the operating period does not need to be an hour.
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Template for a Standardized Contract (SC):

SC = [k, d, Tex, Tpb, Tpe, RC , PC , φ] (2.1)

k = Location where service delivery is to occur

d = Direction (down or up)

Tex = [tminex , tmaxex ] = Range of possible exercise times tex

Tpb = [tminpb , tmaxpb ] = Range of possible power-begin times tpb

Tpe = [tminpe , tmaxpe ] = Range of possible power-end times tpe

RC = [−rD, rU ] = Range of possible down/up ramp rates r

PC = [pmin, pmax] = Range of possible power levels p

φ = Performance payment method for real-time service performance

The down/up limits −rD and rU for the ramp-rates r (MW/min) are assumed to

satisfy −rD ≤ 0 ≤ rU . The lower bound pmin for the power levels p (MW) is assumed to

be non-negative. The direction (down or up) of an SC determines whether these power

levels describe power curtailments or absorptions (down) or power injections (up). The

time points tex, tpb, and tpe denote specific calendar times expressed at the granularity

of minutes.

The presence of swing in the contractual terms of an SC permits this SC to function

as both an energy and a reserve product. Actual real-time service performance under

such an SC cannot be determined until after the end of the operating hour H even if

the SC is a firm (non-optional) contract. Consequently, the contractual terms of an SC

include a performance payment method φ to be used to determine the ex-post payment

to the SC issuer for real-time service performance (if any).

The performance payment method φ can take a wide variety of forms. For example,

as illustrated in Section 2.3, φ might denote a pre-specified price ($/MWh) for delivered

down/up energy. More generally, φ could denote a contingent price for delivered down/up

energy that depends on market conditions (eg, fuel prices) at the time of the delivery.
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Alternatively, φ could provide for the compensation of delivered power measured as

mileage, ie, as the sum of absolute-value up and down power movements over the real-

time dispatch interval, a metric now being used for regulation service performance in

many energy markets to meet the requirements of FERC Order 755 [7].

In order for an SC to be implementable, its contractual terms must satisfy certain

basic requirements. For example, tminpb cannot exceed tmaxpe . In this study it is presumed

that an SC issuer is responsible for ensuring that it can feasibly implement the terms

of any SC it offers. Realistically, however, penalties and eligibility requirements might

need to be introduced to help ensure that the issuers of cleared SCs accurately follow

real-time dispatch instructions, and that these instructions are in accordance with the

contractual terms of the cleared SCs. These contract enforcement mechanisms could

constitute part of the performance payment method φ included within each SC, or they

could be instituted at the level of the power system as a whole.

2.2.2 Illustrative Example of a Standardized Contract

The illustrative up-energy SC depicted in Fig. 2.2 provides a combination of fixed

and swing attributes. The delivery location (bus k) and direction (up) are specified as

single values, as are the exercise time tex, the power-begin time tpb, and the power-end

time tpe. On the other hand, the down/up ramp rate r and the power level p are swing

attributes that can be varied over a range of values.

The darker (green) area within the resulting corridor of contractually-admissible

power dispatch paths depicted in Fig. 2.2 is the up-energy injection that results from

one such path. Any actual up-energy injection is compensated ex post in accordance

with the performance payment method φ included among the SC’s contractual terms.

An example of a down-energy SC can be obtained from Fig. 2.2 by considering a 180◦

rotation of the depicted figure around the time axis.
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Figure 2.2: Example of an SC for up-energy with ramp-rate and power-level swing that
is offered at bus k by a generator with a maximum capacity of 70MW

The SC depicted in Fig. 2.2 can be more concretely interpreted as an up-energy SC

offered by a Demand Response Resource (DRR) into an ISO-managed day-ahead market

(DAM) on day D-1 for a particular operating hour H on day D, as follows. Consider a

Load Serving Entity (LSE) functioning as a load aggregator for a large distribution feeder

connected to the transmission grid at a particular bus k. Residential households on this

feeder have smart meters for their HVAC loads in wireless communication with the LSE

that permits the LSE to make adjustments to these loads. The LSE has permission

from each of these households to make small adjustments in their HVAC energy usage in

return for an agreed-upon monthly lump-sum compensation. The LSE can participate in

a DAM as a DRR either by offering up-energy implemented via HVAC load reductions

or by offering down-energy implemented via HVAC load increases.
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Suppose the LSE participates in the DAM on day D-1 as a DRR by offering the

following up-energy SC at some offer price v for hour H of day D, where hour H is the

time interval between 1300EST and 1400EST:

• Delivery location = Bus k

• Direction = Up

• Tex = Exercise time tex = 0900EST on day D

• Tpb = Power-begin time tpb = 1300EST on day D

• Tpe = Power-end time tpe = 1400EST on day D

• RC = [−1.3MW/min, +1.4MW/Min] = Range of possible down/up ramp rates r

• PC = [10MW, 50MW] = Range of possible power levels p

• φ = Payment method for compensation of delivered power mileage, including a

penalty payment adjustment for deviations between instructed and actual power

mileage

Suppose, also, that this SC is cleared by the ISO. The ISO is then obligated to ensure

that the DRR receives in compensation its offer price v as payment for making available

for hour-H operations on day D the services included in this SC. In turn, the ISO has

the right, but not the obligation, to exercise this SC at 0900EST on day D.

If the SC is exercised, the DRR must be ready to follow any electronic dispatch signal

on day D, starting at time tpb = 1300EST and ending at time tpe = 1400EST, that calls

for the DRR to provide a path of power injections lying within its offered range PC of

power levels that can feasibly be achieved without violating the DRR’s offered range

RC of down/up ramp rates. In turn, the ISO is obligated to ensure that the DRR is

compensated for the mileage of this controlled power path in accordance with the terms

of the performance payment method φ.
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2.2.3 Support of SC Trading via Linked Forward Markets

As in Tesfatsion et al. [86], we propose that SC trading be supported by a sequence

of linked centrally-managed forward markets whose planning horizons can range from

minutes to years. For concreteness, however, we focus in this study on the support of SC

trading by means of linked day-ahead and real-time markets that are centrally managed

by a non-profit Independent System Operator (ISO); see Fig. 2.3.

Figure 2.3: Proposed ISO-managed day-ahead and real-time markets

The non-ISO participants in our proposed day-ahead market (DAM) and real-time

market (RTM) include: (i) Load-Serving Entities (LSEs) who submit SC demand bids in

the form of block energy contracts on behalf of retail energy customers; (ii) dispatchable

Generation Companies (GenCos), Demand Response Resources (DRRs), and Energy

Storage Devices (ESDs) who submit SC supply offers; and (iii) non-dispatchable VERs

whose as-available generation is treated as negative load.2 The requirement that LSE SC

2As discussed in Section 2.5.4, our proposed SC system could be generalized to allow designated types
of VERs to offer their generation as “dispatchable intermittent resources” in DAM/RTM operations,
as is now being permitted in MISO [64]. However, this would raise a number of issues best left for
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demand bids be in block-energy form avoids the need for LSEs to exercise load-balancing

discretion in the implementation of SCs with swing or option exercise times.

Participation in our proposed DAM/RTM processes is not meant to preclude elec-

tricity traders from procuring physical and financial instruments in power exchanges

and over-the-counter power markets to hedge their price and volume risks. However,

physical instruments whose terms require the use of transmission line facilities must be

self-scheduled and cleared in the DAM or RTM to ensure transmission availability and

overall system reliability.

The ISO managing the DAM undertakes Security-Constrained Unit Commitment

(SCUC) and Security-Constrained Economic Dispatch (SCED) conditional on LSE SC

demand bids, ISO SC demand bids (for reserve procurement only), and SC supply offers

from dispatchable GenCos, DRRs, and ESDs. To retain the ISO’s non-profit status,

all costs incurred by the ISO for SC procurement must be passed through to market

participants.

This cost pass-through could simply require all procurement costs to be allocated

to the LSEs in proportion to their share of real-time loads. However, the presence of

performance payment methods φ in SC bids/offers permits more sophisticated arrange-

ments. For example, an LSE’s cost allocation could be based in part on its forecasting

performance, measured ex post by comparing its cleared SC demand bids against the

actual real-time loads of its customers; and an SC supplier’s cost allocation could be

based in part on the accuracy of its service performance, measured ex-post by examining

how well it was able to follow real-time dispatch instructions.

The ISO’s DAM SCUC/SCED objective is to minimize the expected total net cost of

ensuring that sufficient generation is available to balance next-day forecasted net loads

with suitable local and system-wide reserve buffers. Dispatchable generation availability

is determined from dispatchable GenCo, DRR, and/or ESD supply offers. Next-day net

future studies, eg, should VERs be charged or penalized the same as ordinary dispatchable generation
for deviations from their cleared dispatch offers?
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load forecasts for power-balance purposes are determined from LSE SC demand bids and

forecasted VER generation. Reserve buffers are ensured by ISO SC demand bids.

As usual, the DAM SCUC/SCED is subject to unit commitment (UC) conditions,

generation-capacity limits, power-balance constraints, transmission-line limits, and both

local and system-wide reserve-requirement constraints. However, the imposition of the

UC conditions and generation-capacity limits occurs through the contractual terms of

the DAM SC supply offers rather than through ISO-imposed constraints.

We also propose an ISO-managed RTM that runs a SCED every five minutes. Dis-

patchable GenCos, DRRs, and ESDs can offer SCs into the RTM. Only the ISO is

permitted to procure these SCs, for balancing and reserve procurement purposes; and

all ISO RTM procurement costs must be passed through to market participants in order

to preserve the non-profit status of the ISO.

The ISO’s RTM SCED objective is to minimize the expected total cost of ensuring

that adequate generation is available to balance ISO-forecasted real-time net loads with

suitable local and system-wide reserve buffers, given the existing inventory of previously-

cleared SCs. This RTM SCED is subject to generation-capacity limits, power-balance

constraints, transmission-line limits, and both local and system-wide reserve-requirement

constraints. The imposition of the generation-capacity limits occurs through the contrac-

tual terms of the RTM SC supply offers rather than through ISO-imposed constraints.

SCs can provide a wide diversity of services through their contractual terms. As

discussed in greater detail in Section 2.5.3, appropriate compensation for these diverse

services requires a flexible pricing mechanism. Our DAM and RTM are therefore for-

mulated as discriminatory-price auctions in which participants pay (or are paid) their

bid/offer prices for cleared SCs. These bid/offer price payments are compensations for

service availability. Any real-time service performance rendered through these cleared

SCs is compensated ex post in accordance with the performance payment methods ap-

pearing among the contractual terms of the cleared SCs.
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Finally, SCs with swing in their contractual terms can function as both energy and

reserve, and SCs in option form can also function as reserve even if their contractual

terms are fixed. Consequently, our proposed DAM and RTM intrinsically involve a

co-optimization of energy and reserve.

The next two sections use concrete examples to demonstrate how SC trading can be

supported by means of our proposed linked DAM and RTM processes in a way that en-

sures optimal balancing of real-time net loads subject to system and reserve-requirement

constraints.

2.3 RTM Illustrative Example

2.3.1 Overview

Sections 2.3.2 through 2.3.7 present a numerical example illustrating how SC trading

can be supported by means of an RTM in the absence of transmission congestion and

without consideration of linkages to earlier DAM processes. The handling of RTM trans-

mission congestion is addressed in Section 2.3.8, and linkages with earlier DAM processes

are considered in Section 2.4.

2.3.2 Basic Assumptions

Suppose an RTM takes place immediately prior to a particular operating period for

which no congestion is anticipated. For concreteness, we assume this operating period is

a particular hour H on a particular day D, expressed at the granularity of minutes.
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LSE demand bids for hour H are assumed to take the form of constant non-price-

responsive power levels, a simple block-energy form that greatly eases graphical exposi-

tion.3 VER as-available generation exhibiting stochastic variation over hour H is treated

as negative load.

Net load for hour H is then defined to be aggregate LSE demand bids for hour H

minus aggregate VER as-available generation for hour H. The ISO-forecasted net load

profile for hour H of day D at the start of this RTM is assumed to take the form given in

Fig. 2.4. The objective of the ISO managing the RTM is to ensure that this forecasted

net load profile is balanced by generation with an appropriate reserve buffer, keeping

costs to a minimum. The ISO attempts to achieve this objective by procuring a suitable

combination of SCs from dispatchable generation suppliers participating in the RTM.

Figure 2.4: ISO-forecasted net load profile for hour H of day D at start of RTM

These participant suppliers are assumed to consist of three GenCos with the following

ramp-rate and generation-capacity attributes, expressed in Section 2.2.1 notation:

G1 : rD1 = rU1 = 120MW/min,Capmin1 = 0MW, Capmax1 = 600MW

G2 : rD2 = rU2 = 200MW/min,Capmin2 = 0MW, Capmax2 = 700MW

G3 : rD3 = rU3 = 300MW/min,Capmin3 = 0MW, Capmax3 = 900MW

3Two-part LSE demand bids including both price-responsive and non-price-responsive portions, as
in actual U.S. ISO-managed wholesale power markets, can be modeled by allowing each LSE to actively
bid for multiple block-energy contracts at differing bid prices in addition to submitting a non-price-
responsive block energy contract.
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Each of these GenCo offers into the RTM a collection of portfolios, called GenPorts,

together with associated GenPort offer prices. A GenPort consists of one or more SCs

whose terms the GenCo could simultaneously fulfill during hour H if called upon to do

so by the ISO. The ISO can clear at most one GenPort from each GenCo in the RTM.

The offer price vi,j for GenPorti,j is the payment requested by Gi for guaranteeing

it will be available in hour H to fulfill the terms of the SCs included in GenPorti,j if

signalled to do so. Thus, vi,j compensates Gi for service availability costs, such as fixed

avoidable costs and lost opportunity costs. In addition, assuming GenPorti,j is cleared

by the ISO, Gi will also receive performance payments for any services it renders during

hour H under the contractual terms of the SCs in GenPorti,j. Any such performance

payments will be determined in accordance with the performance payment methods φ

included among the contractual terms of the SCs in GenPorti,j. For the example at

hand, each of these performance payment methods φ is assumed to take the form of a

pre-specified price ($/MWh) for delivered down/up energy.4

As clarified in subsequent sections, this two-part pricing scheme permits the GenCos

to ensure the recovery of their expected total costs through a market process, taking into

account their local attributes and conditions. It also permits the ISO to closely tailor

the cleared RTM GenPorts to real-time needs for net load balancing subject to system

and reserve-requirement constraints.

The ISO is permitted to clear at most one GenPort from each GenCo in the RTM.

The resulting cleared GenPorts can thus be represented in the following ISO Portfolio

(ISOPort) form:

ISOPort = {GenPort1,GenPort2,GenPort3} , (2.2)

where no procurement from a GenCo Gi (GenPorti=None) is possible.

4For example, each SCi,j,m in GenPorti,j could correspond to a distinct generation unit m owned by
Gi, and the performance payment method φi,j,m for SCi,j,m could be a down/up energy price ($/MWh)
given by the expected next-day marginal dispatch cost for unit m.
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2.3.3 RTM Supply Offer Specifications

A GenCo’s RTM supply offer is a collection of GenPorts together with associated

GenPort offer prices. Suppose each GenCo offers up-energy in firm contract form, ie, ex-

ercise time tex = tminex = tmaxex = RTM end-time. Suppressing location (k), direction (up),

exercise time tex, and measurement units from SC representations for ease of exposition,

the RTM supply offers of GenCos G1, G2, and G3 are assumed to take the following

form:

G1’s supply offer consists of two GenPorts, each with one SC:

GenPort1,1 = {SC1,1} at offer price v1,1, (2.3)

SC1,1 =[tpb = 0, tpe = 60, |r| ≤ 100, 0 ≤ p ≤ 500, φ = 100]

GenPort1,2 = {SC1,2} at offer price v1,2, (2.4)

SC1,2 =[tpb = 0, tpe = 60, |r| ≤ 120, 0 ≤ p ≤ 500, φ = 105].

G2’s supply offer consists of three GenPorts with multiple SCs:

GenPort2,1 ={SC2,1,1, SC2,1,2} at offer price v2,1, (2.5)

SC2,1,1 = [tpb = 10, tpe = 20, |r| ≤ 200, 0 ≤ p ≤ 600, φ = 135]

SC2,1,2 = [tpb = 30, tpe = 60, |r| ≤ 200, 0 ≤ p ≤ 600, φ = 130]

GenPort2,2 ={SC2,2,1, SC2,2,2, SC2,2,3} at offer price v2,2, (2.6)

SC2,2,1 = [tpb = 0, tpe = 10, |r| ≤ 100, 0 ≤ p ≤ 100, φ = 105]

SC2,2,2 = [tpb = 10, tpe = 20, |r| ≤ 200, 0 ≤ p ≤ 600, φ = 135]

SC2,2,3 = [tpb = 30, tpe = 60, |r| ≤ 200, 0 ≤ p ≤ 600, φ = 130]

GenPort2,3 ={SC2,3,1, SC2,3,2, SC2,3,3} at offer price v2,3, (2.7)

SC2,3,1 = [tpb = 0, tpe = 10, |r| ≤ 100, 0 ≤ p ≤ 100, φ = 105]

SC2,3,2 = [tpb = 10, tpe = 20, |r| ≤ 200, 0 ≤ p ≤ 700, φ = 140]

SC2,3,3 = [tpb = 30, tpe = 60, |r| ≤ 200, 0 ≤ p ≤ 700, φ = 135]
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G3’s supply offer consists of two GenPorts with multiple SCs:

GenPort3,1 ={SC3,1,1, SC3,1,2, SC3,1,3} at offer price v3,1, (2.8)

SC3,1,1 = [tpb = 10, tpe = 20, |r| ≤ 300, 0 ≤ p ≤ 900, φ = 175]

SC3,1,2 = [tpb = 33, tpe = 39, |r| ≤ 200, 0 ≤ p ≤ 400, φ = 155]

SC3,1,3 = [tpb = 48, tpe = 54, |r| ≤ 200, 0 ≤ p ≤ 400, φ = 155]

GenPort3,2 ={SC3,2,1, SC3,2,2, SC3,2,3} at offer price v3,2, (2.9)

SC3,2,1 = [tpb = 10, tpe = 20, |r| ≤ 300, 0 ≤ p ≤ 900, φ = 175]

SC3,2,2 = [tpb = 30, tpe = 39, |r| ≤ 200, 0 ≤ p ≤ 400, φ = 150]

SC3,2,3 = [tpb = 44, tpe = 54, |r| ≤ 200, 0 ≤ p ≤ 400, φ = 150]

2.3.4 Power-Balance Constraints for ISOPorts

Any ISOPort cleared by the ISO in the RTM must permit the achievement of a Zero

Balance Gap (ZBG), i.e., an exact balancing of RTM-cleared generation against the

ISO’s forecasted hour-H load profile in Fig. 2.4. For example, Figs. 2.5-2.7 show how

each of the following ISOPorts enables the achievement of a ZBG:

ISOPort1 = {GenPort1,1,GenPort2,2,GenPort3,1} (2.10)

ISOPort2 = {GenPort1,1,GenPort2,3,GenPort3,1} (2.11)

ISOPort3 = {GenPort1,2,GenPort2,3,GenPort3,2} (2.12)

Each color in these figures indicates the dispatch of generation from a particular GenPort

for a particular GenCo, and different shades of the same color indicate the dispatch of

generation from distinct SCs within a particular GenPort.

Consider, in particular, Fig. 2.6 for ISOPort2 in (2.11). The yellow areas correspond

to GenPort1,1 in (2.3), and the single shade of yellow represents energy dispatched via

this GenPort’s single SC constituent, SC1,1. The green areas correspond to GenPort2,3
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Figure 2.5: Zero balance gap achieved by ISOPort1 for hour H of day D

Figure 2.6: Zero balance gap achieved by ISOPort2 for hour H of day D

in (2.7), and the two areas with different shades of green represent the energy dispatched

via two of this GenPort’s three SC constituents, SC2,3,2 and SC2,3,3. Finally, the blue

areas correspond to GenPort3,1 in (2.8), and the three areas with different shades of blue

represent the energy dispatched via this GenPort’s three SC constituents, SC3,1,1, SC3,1,2,

and SC3,1,3.

2.3.5 Expected Total Cost of a Power-Balanced ISOPort

Consider any ISOPort=(GenPort1,GenPort2,GenPort3) that achieves a ZBG for hour

H. The expected total cost of this ISOPort is the sum of payments arising from two

sources: (i) the portfolio offer prices {v1, v2, v3} that must be paid to GenCos G1, G2,
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Figure 2.7: Zero balance gap achieved by ISOPort3 for hour H of day D

and G3 for the procurement of GenPort1, GenPort2, and GenPort3; and (ii) the total

performance payments the ISO expects it will have to make to G1, G2, and G3 for

down/up energy delivery during hour H under the contractual terms of these constituent

GenPorts in order to achieve the ZBG.

For example, to calculate the expected total performance payments (ii) implied by

the depicted ZBG implementation of ISOPort2 depicted in Fig. 2.6, first measure the

energy (MWh) for each of the areas in Fig. 2.6 with a distinct color shading; each such

area corresponds to a distinct SC implementation. Next, multiply each of these energy

amounts by the performance price φ ($/MWh) included among the contractual terms of

the corresponding SC. Finally, add up all of these amounts.

2.3.6 Reserve Inherent in a Power-Balanced ISOPort

The achievement of a ZBG by an ISOPort implies that the generation available

through this ISOPort is capable of balancing the ISO’s forecasted hour-H load profile.

However, if the SCs constituting this ISOPort include swing, then the ISOPort can also

achieve a ZBG for a range of hour-H load profiles that deviate from the ISO’s forecasted

hour-H load profile. Hereafter, this range will be referred to as the Reserve Range (RR)

of the ZBG ISOPort.
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The RR of a ZBG ISOPort with swing functions as a robust-control device for load-

balancing, reducing the need to consider detailed load scenarios and load-scenario prob-

abilities. However, its exact form depends in a complicated manner on the particular

attribute specifications of the SCs that constitute the ISOPort as well as on the minute-

by-minute operating state of the GenCo suppliers, i.e., the GenCos that have offered

these SCs. Consequently, in any practical application, the RR will have to be approxi-

mated.

For example, Figs. 2.8 through 2.10 plot approximate RRs for ISOPorts 1, 2, and 3 in

(2.10) through (2.12) by assuming that the GenCo suppliers at the start of each minute

M are at their ZBG-generation levels. The depicted approximate RRs are conditional

on the ISO’s forecasted hour-H load profile shown in Fig. 2.4 and on the ISO’s hour-H

ZBG implementations for ISOPorts 1, 2, and 3 shown in Figs. 2.5 through 2.7.

Figure 2.8: Reserve range RR for ISOPort1 during hour H of day D

In particular, the approximate RR depicted in Fig. 2.9 for ISOPort2 was derived by

means of the following steps, applicable for any ZBG ISOPort. At the start of each

minute M of hour H, calculate the minimum and maximum power levels RRmin
M and

RRmax
M that could be attained at the end of minute M. These minimum and maximum

power levels depend on: (a) the contractual terms of the SCs constituting ISOPort2; (b)
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Figure 2.9: Reserve range RR for ISOPort2 during hour H of day D

Figure 2.10: Reserve range RR for ISOPort3 during hour H of day D

the particular ZBG implementation of ISOPort2 for hour H; and (c) the ZBG operating

state of each GenCo supplier for ISOPort2 at the start of each minute M of hour H.

Specifically, for each GenCo supplier Gi, and for each minute M during the operating

hour H, let Geni,M denote the ZBG generation level (MW) of Gi at the start of M. Also,

let rDi,M / rUi,M denote the down/up ramp-rate limits (MW/min) for Gi during M, and let

pmini,M / pmaxi,M denote the min/max power limits (MW) for Gi at the end of M. Then the

lower and upper bounds on the power levels that could be delivered by Gi at the end of
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M, conditional on its ZBG state at the start of M, are given by

PILi,M = max {Geni,M − rDi,M , pmini,M } ≥ pmini,M (2.13)

PIUi,M = min {Geni,M + rUi,M , p
max
i,M } ≤ pmaxi,M (2.14)

The minimum power level RRmin
M attainable for the system as a whole at the end of

minute M can be approximated by summing the lower power bounds (2.13) across the

set GH of GenCo suppliers Gi. Similarly, the maximum power level RRmax
M attainable

for the system as a whole at the end of minute M can be approximated by summing the

upper power bounds (2.14) across the set GH of GenCo suppliers Gi. The reserve range

RRM at the end of minute M is then approximately given by the power-level interval

between these summed lower and upper bounds:

RRM = [RRmin
M , RRmax

M ] = [
∑
i∈GH

PILi,M ,
∑
i∈GH

PIUi,M ] (2.15)

and the RR over the entire hour H, expressed at the granularity of minutes, is approxi-

mately given by

RR = {RRM |M ∈ H} (2.16)

To illustrate in more concrete terms the determination of the RR for any given hour

H, consider the following simple example. Let the load profile for some operating hour

H be as depicted in Fig. 2.4. Suppose the ISO is planning to achieve a ZBG for this load

profile by implementation of ISOPort2 in (2.11) with GenCo suppliers G1, G2, and G3,

where the dispatch levels for these GenCo suppliers are as depicted in Fig. 2.6.

Suppose the system is at the start of minute M=35 (or equivalently, at the end of

minute M=34). The ZBG generation levels for G1, G2, and G3 are 400MW, 600MW,

and 200MW, respectively. The down/up ramp-rate limits for G1 are rD1,35 = rU1,35 =

100MW/min, and the min/max power limits for G1 are pmin1,35 = 0MW and pmax1,35 = 500MW.

The down/up ramp-rate limits for G2 are rD2,35 = rU2,35 = 200MW/min and the min/max
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power limits for G2 are pmin2,35 = 0MW and pmax2,35 = 700MW. Finally, the down/up ramp-

rate limits for G3 are rD3,35 = rU3,35 = 200MW/min and the min/max power limits for G3

are pmin3,35 = 0MW and pmax3,35 = 400MW.

Given these conditions at the start of M=35, the lower and upper power bounds

attainable by each GenCo supplier at the end of minute M=35 can be calculated using

(2.13) and (2.14), as follows:

PIL1,35 = max {400MW − 100MW, 0MW} = 300MW

PIU1,35 = min {400MW + 100MW, 500MW} = 500MW

PIL2,35 = max {600MW − 200MW, 0MW} = 400MW

PIU2,35 = min {600MW + 200MW, 700MW} = 700MW

PIL3,35 = max {200MW − 200MW, 0MW} = 0MW

PIU3,35 = min {200MW + 200MW, 400MW} = 400MW

Consequently, the reserve range RR35 at the end of minute M=35 can be approximated

using (2.15), as follows:

RR35 = [300MW + 400MW + 0MW, 500MW + 700MW + 400MW ]

= [700MW, 1, 600MW ] (2.17)

The above method is used to derive the plots in Figs. 2.8-2.10 for the complete hour-H

RRs for ISOPorts 1, 2, and 3 described in (2.10) through (2.12).

The GenCos can seek compensation for the RR characteristics of their RTM-offered

GenPorts through their GenPort offer prices. In addition, GenCos with cleared GenPorts

will be compensated ex post for any actual down/up energy they deliver during hour H,

using the performance prices φ appearing among the contractual terms of these cleared

GenPorts. This includes, in particular, compensation for any down/up energy needed to

balance deviations between actual and ISO-forecasted real-time loads.
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2.3.7 Practical Determination of Optimal ISOPorts

Let {LM | 1 ≤ M ≤ 60} denote the ISO-forecasted load profile for hour H. Suppose

the ISO’s requirements for down/up reserve during H can be expressed in terms of the

following restrictions on the reserve range (2.16) for this load profile for some given

α∗ = (αD∗, αU∗) ≥ 0: For each minute M of hour H, the lower and upper bounds of

RRM in (2.16) must satisfy

RRmin
M ≤ [1− αD∗]LM ≤ [1 + αU∗]LM ≤ RRmax

M (2.18)

Suppose at least one feasible ISOPort achieves a ZBG for H. Then the ISO can

formulate its RTM optimization problem as a multi-criteria optimization problem with

three lexicographically-ordered objectives: (i) ensure a ZBG; (ii) ensure RR reliability

at level α∗, i.e., satisfy condition (2.18); and (iii) minimize the expected total cost of

ensuring (i) and (ii).

More precisely, as schematically depicted in Fig. 2.11(a), the ISO can undertake the

following three steps in sequence. First, determine the set IZ of all feasible ISOPorts that

achieve a ZBG. Second, determine the (possibly empty) subset IZα∗ of IZ for which the

RR requirement (2.18) is satisfied. Third, determine the subset IZ,MT Cα∗ of IZα∗ entailing

minimum expected total cost, where this expected total cost consists of both GenPort

procurement costs and expected ex-post GenPort performance costs for ensuring a ZBG

that satisfies RR requirement (2.18). Any element of IZ,MT Cα∗ constitutes an optimal

ISOPort selection for the RTM.

Relatively small values for (αD∗,αU∗) in (2.18) might be needed to ensure the non-

emptiness of IZα∗ . For example, as depicted in Figs. 2.8-2.10, ISOPort1, ISOPort2 and

ISOPort3 can each achieve a ZBG that satisfies the RRα∗ constraint (2.18) when αD∗ =

αU∗ = 0. However, only ISOPort3 can achieve a ZBG that satisfies the RRα∗ constraint

(2.18) when αD∗ = αU∗ = 0.5. Smaller values for αD∗ and αU∗ should also entail lower

minimum total costs due to less need for swing in the cleared SCs. On the other hand,
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Figure 2.11: Depiction of the subsets IZ,MT Cα∗ and ILZ,MT CLα∗ of optimal (minimum total
expected cost) ISOPorts subject to (a) system-wide ZBG and RR constraints in the
absence of binding transmission constraints and (b) local ZBG and RR constraints in
the presence of binding transmission constraints.

setting these values too small could jeopardize grid reliability if actual real-time loads

differ significantly from their forecasted levels.

2.3.8 Incorporation of Transmission-Line Limits

Until now, our RTM illustrative example has assumed an absence of transmission

congestion. This simplification has permitted us to focus solely on the economic dispatch

problem of ensuring a balance between total dispatched generation and ISO-forecasted

total system load, subject to a system-wide RRα∗ constraint (2.18).

Consider, now, an RTM for which the flow of power on each transmission line is

subject to a potentially binding limit. In this case it is not sufficient to consider power and

ramp-rate availability on a system-wide basis alone, since transmission congestion could

limit the ability to move power from one bus to another. Rather, to ensure reliability,

an ISO will need to impose a ZBG constraint at each bus, hereafter this constraint is

referred to as a local ZBG constraint.5 Moreover, the ISO will also presumably wish to

5Ignoring losses, the local ZBG constraint at each bus k is an equation ensuring that the total power
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impose an RRα∗ constraint (2.18) at each bus, hereafter this constraint is referred to as

a local RRα∗ constraint.6

Note that a ZBG ISOPort satisfying a local RRα∗ constraint at each bus automatically

satisfies a system-wide RRα∗ constraint. Consequently, as depicted in Fig. 2.11(b), the

following nested relationships hold. The set ILZα∗ consisting of all feasible ISOPorts

satisfying a local ZBG constraint at each bus and a system-wide RRα∗ constraint is

a subset of IZα∗ . Moreover, the set ILZLα∗ consisting of all feasible ISOPort selections

satisfying local ZBG and RRα∗ constraints at each bus is a subset of ILZα∗ . Finally, the

set ILZ,MT CLα∗ consisting of all optimal (minimum expected total cost) ISOPort selections

for the RTM SCED optimization augmented with local ZBG and RRα∗ constraints at

each bus is a subset of ILZLα∗ .

For example, as in Section 2.3.2, consider an RTM with three GenCo participants

G1, G2, and G3 that takes place immediately before an operating hour H on some day

D. Assume, now, that this RTM is operating over a 2-bus transmission grid with buses

A and B, where G1 is located at bus A and G2 and G3 are located at bus B, and that

the transmission line connecting buses A and B has a capacity limit of 1,100MW. As

depicted in Fig. 2.4, the ISO-forecasted load at the end of minute M=15 for hour H

is L15=2,000MW. Assume the ISO has forecasted that L15 will be divided into a load

LA=1,500MW at bus A, and a load LB=500MW at bus B.

Suppose the ISO secures ISOPort3 in the RTM in an attempt to ensure a ZBG for

hour H, where ISOPort3 is given by (2.12). The GenCo suppliers for ISOPort3 are G1,

G2, and G3. Suppose the generation levels for G1, G2, and G3 at the start of minute

M=15 are given by 400MW, 600MW and 600MW, respectively. Using the contractual

injected at bus k equals the total power withdrawn at bus k plus the total power flowing out from bus
k to other buses.

6In practice, local reserve requirements are imposed at the level of reserve zones. Roughly defined, a
reserve zone is a grid region (buses plus connecting transmission lines) with normally negligible internal
congestion that can on occasion operate as a load pocket because the transmission lines linking this region
to other grid regions become congested. Load pockets can cause reliability problems if the generation
capacity internal to the pocket is not sufficient to meet internal load. In this subsection, reserve zones
are assumed to consist of singleton buses for ease of exposition.
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terms of the SCs in ISOPort3, it can then be shown that the feasible power intervals for

G1, G2, and G3 at the end of minute M=15 are as follows:7 [280MW,500MW] for G1;

[400MW,700MW] for G2; and [300MW,900MW] for G3.

Figure 2.12: Depiction of an RTM ISOPort selection that satisfies local ZBG and RRα∗

constraints at each bus A and B at the end of minute M=15 for hour H of day D,where
αD∗ = αU∗ = 0.05.

Consequently, the selection of ISOPort3 permits the ISO to achieve a local ZBG

at the end of minute M=15 with power flowing from bus B to bus A. Specifically, as

depicted in Fig. 2.12, G1 at bus A can be dispatched at 500MW, which is its maximum

possible power level. Also, G2 at bus B can be dispatched at 600MW, which is below

its maximum possible power level of 700MW, and G3 at bus B can be dispatched at

its maximum possible power level of 900MW. The load LA=1,500MW at bus A exceeds

by 1,000MW the 500MW of power generated by G1. However, the 1,500MW of power

generated at bus B by G2 and G3 exceeds the load LB=500MW at bus B by 1,000MW;

7Given ISOPort3, the down/up ramp-rate limits for G1, G2, and G3 during M=15 are rD1,15 = rU1,15
= 120MW/min, rD2,15 = rU2,15 = 200MW/min, and rD3,15 = rU3,15 = 300MW/min. Also, the min/max

power limits for G1, G2, and G3 at the end of M=15 are pmin
1,15 = 0MW, pmax

1,15 = 500MW, pmin
2,15 = 0MW,

pmax
2,15 = 700MW, pmin

3,15 = 0MW, and pmax
3,15 = 900MW. These conditions, together with the assumed

generation levels for G1, G2, and G3 at the start of minute M=15, determine the feasible power intervals
for G1, G2, and G3 at the end of M=15. For example, for G1 this feasible power interval is given
by [FPImin

1 , FPImax
1 ] where FPImin

1 = max {400MW − 120MW, 0MW} = 280MW and FPImax
1 =

min {400MW + 120MW, 500MW} = 500MW.
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and this 1,000MW can be transferred from bus B to bus A to satisfy the remaining load

at bus A without violating the 1,100MW transmission line limit.

Now consider the additional RTM goal of ensuring a local RRα∗ constraint at each

bus A and B at the end of minute M=15, with α∗ = (0.05, 0.05). To satisfy the 5% up-

power requirements of these local RRα∗ constraints, the ISO needs +75MW of up-power

reserve at bus A (5% of LA=1,500MW) and +25MW of up-power reserve at bus B (5%

of LB=500MW). As seen in Fig. 2.12, the +75MW requirement at bus A is satisfied

under ISOPort3 because G2 at bus B has +75MW of unencumbered up-power that can

flow to bus A without violation of the transmission line limit. Moreover, the +25MW

requirement at bus B is satisfied under ISOPort3 because G2 at bus B has +25MW of

additional unencumbered up-power.

Conversely, to satisfy the 5% down-power requirements of these local RRα∗ con-

straints, the ISO needs -75MW of down-power reserve at bus A and -25MW of down-

power reserve at bus B. As seen in Fig. 2.12, the -75MW requirement at bus A is satisfied

because G1 can feasibly reduce its 500MW dispatch level to 425MW. Moreover, the -

25MW requirement at bus B is satisfied because G2 and G3 can feasibly reduce their

total dispatch level by 25MW, either separately or in combination.

2.4 Linkages between the RTM and the DAM

2.4.1 Overview

This section extends the RTM illustrative example presented in Section 2.3 to include

the prior operations of a DAM, as depicted in Fig. 2.13.

This DAM is assumed to operate in accordance with the general DAM description

provided in Section 2.2.3. However, we maintain the simplifying assumptions introduced

in Section 2.3 that all load is fixed and all line losses are negligible; and we also assume

the absence of transmission congestion to further ease graphical depictions.
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Figure 2.13: Illustrative time-line for DAM/RTM linkages

A key distinction between the DAM on day D-1 and the RTM on day D is that power-

balance constraints in the DAM are based on LSE demand bids, not on the ISO’s own

load forecasts. In particular, for the illustrative example at hand, the loads appearing

in the DAM power-balance constraints are the LSEs’ DAM-submitted fixed (non-price-

responsive) block-energy demand bids.

Nevertheless, the ISO has a fiduciary responsibility to balance actual real-time loads

to ensure grid reliability. Consequently, the ISO is permitted to bid for SCs in the DAM

on day D-1 to ensure reserve requirements are met, where these reserve requirements

are informed by the ISO’s own next-day load forecasts.8 The ISO then matches and

clears DAM-submitted SC bids and offers to achieve a least-cost ZBG subject to system

constraints and reserve requirements. The ISO subsequently enters into the RTM on day

D with a record of all DAM-cleared SCs and conducts RTM operations conditional on

this SC inventory.

The operations of the RTM for a particular operating hour H in the absence of

SC inventory conditioning were illustrated in Section 2.3. This illustration will now be

extended to show how RTM operations for hour H could be affected by SC inventory con-

ditioning. Section 2.4.2 considers the case in which reserve requirements are entirely for

regulation (load-balancing) purposes. Contingency reserve requirements are considered

in Section 2.4.3.

8As in Section 2.2.3, we require all costs arising from the ISO’s DAM SC procurement to be charged
to market participants in order to preserve the ISO’s non-profit status.
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2.4.2 DAM Linkages with Regulation Reserve Requirements

Let LH denote the actual load profile for hour H of day D, and let LF,DAMH denote

the ISO’s forecast for LH at the start of the DAM. Figure 2.14 illustrates how the DAM-

cleared LSE demand bids (all in block-energy form) imply a constant power level for

hour H that can deviate from LF,DAMH . The difference between the two represents the

down/up regulation reserve that the ISO would need to procure in the DAM in order

to expect to be able to achieve actual load balancing for hour H, conditional on its own

load forecasts. Hereafter this difference will be denoted by LNF,DAMH .

Figure 2.14: DAM-cleared LSE demand bids for hour H vs. the ISO’s forecasted load
profile LF,DAMH for hour H at the time of the DAM

In addition to load-balancing, however, the ISO needs to ensure that it satisfies DAM

down/up regulation reserve requirements. Suppose these requirements take the form of

a system-wide RR constraint (2.18) with α∗DAM = (0.10, 0.10). This means that the

ISO must procure SCs in the DAM with sufficient swing (flexibility) in their contractual

terms that they are capable of covering a corridor of potential load profiles around the

ISO’s forecasted real-time net load profile LNF,DAMH with a 10% width determined by

α∗DAM . This corridor, hereafter referred to as the DAM 10% power corridor, is depicted

in Fig. 2.15.
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Figure 2.15: The DAM 10% power corridor for hour H of day D, conditional on the ISO’s
DAM-forecasted net load profile LNF,DAMH for hour H of day D

As depicted in Fig. 2.16, the forecast LF,DAMH that the ISO forms for LH at the time of

the DAM will typically differ from the forecast LF,RTMH that the ISO forms for LH at the

time of the RTM.9 For example, load could be affected by uncertain weather conditions,

and the ISO could have improved information about these weather conditions at the time

of the RTM relative to the information available to the ISO at the time of the DAM.

Figure 2.16: RTM vs. DAM ISO-forecasted load profiles LF,RTMH and LF,DAMH for hour H
of day D

9Note LF,RTM
H in Fig. 2.16 coincides with the ISO-forecasted load profile in Fig. 2.4.
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The ISO’s RTM objective is to ensure a least-cost ZBG for hour H of day D subject

to regulation reserve requirements, conditional on its updated load forecast LF,RTMH ,

GenCo/DRR/ESD RTM supply offers, and existing DAM-cleared SCs. Suppose the

reserve requirements take the form of a system-wide RR constraint (2.18) with α∗RTM =

(0.05, 0.05).10 This means that the ISO must ensure, by the end of the RTM, that SCs

have been procured with sufficient swing (flexibility) in their contractual terms that they

are capable of covering a corridor of potential load profiles around the ISO’s forecasted

real-time load profile LF,RTMH with a 5% width determined by α∗RTM . Call this corridor

the RTM 5% power corridor.

The gap GL
M = [PCL,RTM

M −PCL,DA
M ] between the lower bound PCL,RTM

M of the RTM

5% power corridor and the lower bound PCL,DA
M of the DAM 10% power corridor for

minute M of hour H determines the down-power amount Pdown
M the ISO needs to procure

in the RTM for injection during minute M of hour H. Specifically,

Pdown
M = min{GL

M , 0} (2.19)

Similarly, the gap GU
M = [PCU,RTM

M −PCU,DA
M ] between the upper bound PCU,RTM

M of the

RTM 5% power corridor and the upper-bound PCU,DA
M of the DAM 10% power corridor

for minute M of hour H determines the up-power amount Pup
M that the ISO needs to

procure in the RTM for injection during minute M of hour H. Specifically,

Pup
M = max{GU

M , 0} (2.20)

Figure 2.17 illustrates the RTM down/up power requirements Pdown
M and Pup

M that are

implied by the lower and upper bounds PCL,RTM
M , PCL,DA

M , PCU,RTM
M , and PCU,DA

M for

each minute M of hour H. Note, for example, that no down-power procurement is needed

in the RTM during minutes 10 to 20 of hour H because PCL,DA
M < PCL,RTM

M ≤ 0 over this

10The ISO’s load forecast errors in the RTM can be expected to be smaller than the ISO’s load forecast
errors in the DAM, and this is reflected in the specification of smaller component values for α∗RTM in
comparison with α∗DAM .
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time interval. On the other hand, up-power procurement is needed in the RTM during

minutes 10 to 20 of hour H because PCU,RTM
M > PCU,DA

M ≥ 0 during this time interval.

Figure 2.17: RTM down/up power procurement needed to satisfy load balancing with a
5% RR constraint for hour H of day D, conditional on LF,RTMH and the DAM 10% power
corridor

In summary, permitting linkages between the DAM and the RTM changes the form

of the ISOPorts available for ISO selection in the RTM. For the illustrative example

developed in Section 2.3, each ISOPort in the collection IZα∗ of ISOPorts achieving an

RTM ZBG subject to the RTM RR constraint (2.18) for some given α∗RTM now takes

the form

ISOPort = {GenPort1,GenPort2,GenPort3 | Contract Inventory} (2.21)

The contract inventory appearing in (2.21) consists of all SCs procured in the DAM whose

exercise and/or use in combination with GenPort1, GenPort2, and GenPort3 permits the

achievement of an RTM ZBG subject to the RTM RR constraint. For comparative

selection purposes, the relevant (i.e., avoidable) expected total cost of ISOPort (2.21)

thus consists of two parts:

(i) the performance payments arising from the exercise and/or use of the SCs in the

contract inventory to achieve an RTM ZBG subject to the RTM RR constraint;11

11Note that the SCs in the contract inventory have already been procured, hence their procurement
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(ii) the portfolio offer prices and performance payments arising from the RTM-procurement

and implementation of the SCs comprising GenPort1, GenPort2, and GenPort3.

The RTM is a balancing mechanism permitting the contract inventory to be supple-

mented as needed with new SC procurement to achieve real-time load balancing. As

demonstrated in Fig. 2.17, the size of the RTM trade volume can be very small; it will

tend to vary inversely with the amount of swing in the contract inventory.

Finally, under our proposed SC system, compensation obligations are separately in-

curred in the DAM (for service availability), in the RTM (for service availability), and

in real time (for service performance). However, as illustrated in Fig. 2.18, the compen-

sation obligations incurred for any particular operating hour H can in fact be settled at

a single time point subsequent to H.

Figure 2.18: A possible time-line for hour-H settlements

costs are sunk (i.e., unavoidable) costs that should not affect the ISO’s RTM selection of an ISOPort.
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2.4.3 Contingency Reserve Considerations

Contingency reserve is spinning (synchronized) or non-spinning generation capacity

that is able to reach a declared output level within a stated time interval in order to

handle unusual power needs, such as the forced outage of a line or unit [30]. For resources

with relatively slow ramp rates, the provision of contingency reserve through the RTM

could be difficult if not impossible. In addition, regulation reserve can be efficiently

substituted for contingency reserve under some market and system conditions.

Consequently, we propose that the ISO be permitted to clear an appropriate combina-

tion of SCs in the DAM to satisfy reserve requirements for both normal and contingency

operating conditions, in addition to meeting load-balancing needs. As for regulation

reserve, we require all of the ISO’s DAM procurement costs for contingency reserve to

be charged to market participants in order to preserve the ISO’s non-profit status.

For resources with must-run constraints (pmin > 0) as well as UC costs (e.g., no-

load and start-up/shut-down costs), we anticipate that the ISO’s contingency reserve

procurement would largely occur through the procurement of SCs in option form. These

types of contracts provide a “no exercise” option that could be used to save UC costs

in cases in which updated ISO forecasts of system conditions render some contingency

reserve unnecessary as an operating point approaches.

For resources with no must-run constraints (pmin = 0), there is no operational differ-

ence for the ISO in securing contingency reserve either through an SC in firm form or

through an SC in option form as long as these SCs have identical contractual terms apart

from exercise option(s). This follows because the ISO can choose to implement the SC

in firm form at a power level p = 0, thus effectively achieving the “no exercise” option

of the SC in option form. However, the non-profit ISO has a fiduciary responsibility to

ensure efficient operation of the power grid. Early signaling of “no exercise” decisions to

the issuers of SCs in option form might permit these issuers to direct their resources to

alternative uses, thus avoiding lost opportunity costs.
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2.5 Discussion

2.5.1 Comparison with Real-World TSO/ISO Operations

Our ISO-managed DAM/RTM design for the support of SC trading is structurally

similar to existing European and U.S. wholesale power market designs. European whole-

sale power markets include “spot” (day-ahead) and intraday markets for energy and

reserve managed by TSOs operating on a non-profit-making basis [32, 35]. U.S. whole-

sale power markets include day-ahead and real-time imbalance markets for energy and

reserve managed by non-profit ISOs [28].

Moreover, the idea of permitting resources to offer options into TSO/ISO-managed

wholesale power markets is not new. For example, Moriarty and Palczewski [71] demon-

strate how a small electricity storage unit could advantageously be permitted to offer

American call options into a centrally-managed real-time imbalance market to facilitate

load balancing.

On the other hand, our SC system differs sharply from current TSO/ISO operations

in other regards. SCs with swing function as intrinsically combined energy and reserve

products permitting the provision of a wide range of flexibly-provided services. Also, re-

wards and penalties can be included in SC performance payment methods to encourage

good service performance, eg, accurate load forecasting and/or accurate following of dis-

patch instructions, where the rewards and penalties are assessed ex post based on actual

performance. This inclusion could be required at the SC system level. Alternatively, SC

suppliers could voluntarily undertake this inclusion as a way to signal the quality of their

offered services to potential SC buyers.

Moreover, our SC system functions as a two-part pricing system under which all

payments are compensations for value rendered, with no additional market or out-of-

market adjustments required. Service availability compensation (in the form of SC offer-

price payments) becomes obligatory at the commencement of service availability, ie, as
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soon as SC supply offers are cleared. In contrast, service performance compensation

(through SC performance payment methods) does not become obligatory until services

have been performed in real time.

This two-part pricing system contrasts sharply with the Locational Marginal Pricing

(LMP) systems currently implemented in U.S. ISO-managed wholesale power markets.

Schweppe et al. [79] conceptualized LMPs for true spot markets in which there is no

separation in time between payment and delivery, not for forward markets such as DAMs

and RTMs. Currently, DAM LMP payment commitments are made in advance for the

anticipated real-time dispatch of DAM-cleared generation, that is, in advance of value

received. They must then subsequently be adjusted through RTM LMP payments to

account for any deviations between DAM and RTM scheduled dispatch levels.

Moreover, DAM/RTM LMP payments do not necessarily provide adequate compen-

sation for the costs incurred by resources to provide service availability. The perceived

need to cover such costs more fully has led to the institution of capacity markets and

various out-of-market uplift payments. More details about comparison between our pro-

posed SC system and real-world ISOs are reported in Appendix A.

2.5.2 Comparison with Existing Standardized Power Contracts

The restructuring of European and U.S. electricity sectors, together with their in-

creased reliance on VER generation, has resulted in increased price and volume risks

for utilities and independent power producers as prices and net loads have become more

volatile and difficult to forecast [53]. Financial and physical instruments are now heavily

traded in Europe and the U.S. on exchanges and in over-the-counter markets as a means

for hedging exposure to these risks [3, 25, 27, 75].

In Europe, standardized power contracts have been developed by the Agency for the

Cooperation of Energy Regulators [1]. In the U.S., standardized power contracts have

been developed by the Edison Electric Institute and the Western Systems Power Pool
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[26, 95]. These widely used contracts are negotiated bilateral contracts between two

counterparties.

Our proposed standardized contracts (SCs) differ in three important ways from

ACER, EEI, and WSPP contracts. First, SCs are bids/offers for submission to an

ISO-managed wholesale power market for possible clearing against other submitted of-

fers/bids. In contrast, an ACER, EEI, or WSPP contract is a private agreement between

two counterparties; it is subsequently self-scheduled in a TSO/ISO-managed wholesale

power market only if fulfillment of the terms of the contract requires the use of power

transmission lines.

Second, although the services provided through the contractual terms of SCs can

cover the full range of product attributes included in ACER, EEI, and WSPP contracts,

SC services are not rigidly separated into product types (capacity, reserve, and energy).

Rather, SC services can be used to fulfill capacity requirements (general availability),

reserve requirements (designated availability), and/or energy requirements (scheduled

real-time dispatch) as appropriate.

Third, SCs permit swing (flexibility) in all of the services included in their contractual

terms. In contrast, swing in ACER, EEI, and WSPP contracts is limited to option

exercise dates in contracts taking an option form [1, 26, 95].

2.5.3 Discriminatory vs. Uniform Pricing of Contracts

A market is said to exhibit market efficiency if the total net surplus extracted from

the market by the market participants is at a maximum. Total net surplus is measured

in practice as the sum of the differences between the buyers’ maximum willingness to pay

and the sellers’ minimum acceptable payment for each successively traded commodity

unit; see Stoft [84] and Tesfatsion [85].

In order for market efficiency to hold, all valued attributes of the market-traded com-

modity must be properly priced and compensated at the margin. In a day-ahead energy
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market organized as a bid/offer (double) auction, market efficiency can be achieved by

means of a locally uniform pricing mechanism that assigns the same price to all energy

units (MWh) being traded at a particular location for delivery at this location at a par-

ticular later time; see Tesfatsion [85] and Li and Tesfatsion [57]. This is because the

units of the traded product, characterized by physical type (energy), delivery location,

and delivery time, are homogeneous.

However, a uniform pricing mechanism applied to a traded product does not neces-

sarily result in market efficiency if the units of this product are not homogeneous. In

particular, in a market for which buyers and sellers are submitting bids and offers for

differentiated products – referred to as a monopolistically competitive market within eco-

nomics – the buyers and sellers must be permitted to bid and offer differentiated prices

for units of these differentiated products in order for these prices to reflect the true value

of these units to buyers and sellers at the margin, a necessary prerequisite for market

efficiency.

As discussed in previous sections, the SCs traded in our proposed DAM and RTM

can be highly differentiated products. First, SCs can differ in terms of the types of

services they offer. Second, even if two SCs offer the same types of services, the two SCs

can differ in terms of the amount of swing included in the specification of these services.

Consequently, our DAM and RTM are monopolistically competitive markets. The most

appropriate pricing mechanism for SCs in our DAM and RTM is thus a discriminatory

pricing mechanism in which SC sellers are permitted to offer differentiated prices for the

sale of their differentiated products and SC buyers are permitted to bid differentiated

prices for the purchase of these differentiated products.

2.5.4 Comparison with Existing VER Initiatives

A major development in European and U.S. TSO/ISO-managed wholesale power

markets is that increased VER penetration is increasing the volatility of net load (ie,
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load minus as-available generation). Some TSOs/ISOs are revising their market rules

and product definitions to accommodate this development.

For example, as discussed by Navid and Rosenwald [72] and Xu and Tretheway [96],

MISO and CAISO have each proposed the introduction of “flexible ramping” products.

Also, as discussed by Seliga et al. [80], ISO-NE has introduced a major rule change called

“Energy Market Offer Flexibility.” In addition, some ISOs are exploring innovative ways

to incorporate VERs more fully into DAM/RTM operations. For example, MISO has

introduced a new resource category called Dispatchable Intermittent Resource (DIR),

designed primarily for its wind resources [64].

Our proposed SC system is not in conflict with the above market developments. To

the contrary, as detailed in previous sections, SC trading would provide additional types

of flexibility to both market participants and system operators that complement and

extend these developments.

2.5.5 Robust-Control Management of Uncertain Net Load

A key requirement of standard two-stage stochastic SCUC formulations is the need

to specify probability-weighted load scenarios with sufficient accuracy that a switch from

currently-used deterministic SCUC formulations can be justified in terms of improved

performance. For example, as shown in Krishnamurthy et al. [51], given a simulated

“true” load distribution and an approximate set S of load scenarios, a deterministic

SCUC formulation can result in lower energy costs than a stochastic SCUC formulation

based on S if reserve requirements for the former are set within a “sweet spot” range of

values.

The rapidly growing reliance on VERs, resulting in increased net load uncertainty

and volatility, has encouraged efforts to develop improved stochastic SCUC formulations

based on net load scenarios. See, for example, Morales et al. [69], Papavasiliou et al.

[77], and Vrakopoulou et al. [90]. However, these approaches rely on having an accurate
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modeling of the stochastic behavior of net load, a goal that has not yet been attained for

as-available generation such as wind and solar power. In addition, to ensure tractability,

they require the application of scenario reduction techniques capable of retaining the

essential features of the net load scenarios derived from the original stochastic net load

modeling.

Our proposed SC system offers an alternative robust-control approach to the man-

agement of uncertain net load. As detailed in Section 2.3, under this system the ISO

considers in advance of an operating period how much swing (flexibility) will be needed

in cleared SCs to cover a suitably wide corridor around an expected net load profile for

this operating period. Consequently, a detailed specification of net load scenarios is not

required.

2.5.6 Amelioration of Merit-Order and Missing-Money Issues

As noted in Section 2.5.4, centrally-managed wholesale power markets such as MISO

are attempting to integrate VERs into the operations of their DAMs by permitting these

resources to submit DAM supply offers based on generation forecasts. VERs tend to

have relatively low marginal dispatch costs. Hence, increased VER participation tends

to decrease the profits of thermal generators by reducing day-ahead energy prices, an

outcome referred to in the power systems literature as the merit-order effect [82]. On

the other hand, increased VER penetration requires an increase in flexibly-controllable

generation to handle the resulting increased volatility of net load. Given the current state

of electric energy storage development, this increase in flexibly-controllable generation

must largely come from thermal generation.

The problem is then as follows. How can an adequate amount of flexibly-controllable

thermal generation be ensured for matching the increased volatility of net load resulting

from an increased penetration of VERs when the latter penetration reduces thermal

generation profits and hence the incentive to invest in and maintain thermal generation?
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This problem can be ameliorated by guaranteeing that thermal generators receive full

compensation for all of the valuable services they provide, including flexibly-controllable

generation. Our SC system permits this full compensation.

Specifically, under our SC system a thermal generator can offer a GenPort (ie, a

portfolio of SCs) that accurately expresses the types of services it can provide as well as

the degree of flexibility (swing) with which each of these types of services can be provided.

The generator should offer this GenPort at a price that fully covers the costs it would

incur to ensure the availability of these services, including capital and lost opportunity

costs. If the GenPort is cleared, the generator receives an immediate compensation

commitment for service availability equal to the GenPort’s offer price. The generator

also receives ex-post compensation for any real-time services performed under the terms

of the GenPort, where this ex-post compensation is determined by the performance

payment methods appearing in the SCs that comprise the GenPort.

Another problem arising in centrally-managed wholesale power markets is missing

money. Cramton and Ockenfels [22] characterize this problem as follows: “In ‘normal’

periods, when there is no shortage of capacity, prices are below the level needed to cover

operating and capital costs of new capacity, and in scarcity events, prices are unlikely to

accurately reflect the scarcity.”

For concreteness, our current paper focuses on the support of SC trading through

relatively short-horizon DAM and RTM operations. More generally, however, SC trading

could be supported by a sequence of linked forward markets that includes longer-term

forward markets with planning horizons spanning a year or more. In these longer-term

forward markets, the two-part pricing of SCs would permit investors to receive availability

and performance payments that fully cover their capital, lost opportunity, and operating

costs, thus helping to resolve the missing-money problem.
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2.6 Conclusion: Energy Policy Implications

Key policy implications of our proposed market-supported trading of standardized

contracts (SCs) permitting swing (flexibility) in their contractual terms are noted through-

out Sections 2.1 through 2.5. These policy implications are concisely summarized below:

(i) The SC system permits separate full market-based compensation for service availability

and service performance

SCs can function both as standardized instruments for the procurement of service

availability in forward markets and as standardized blueprints for the procurement of

service performance in real-time system operations. Thus, SC trading supports the goals

of FERC Order 755 [38]; but this support is for a much broader array of services than

envisioned in this order.

ii) The SC system facilitates a level playing field for market participation

The SC system focuses on service provision capability rather than on the physical

characteristics of resources. This should permit and encourage the participation of a

wider array of resources in wholesale power markets.

(iii) The SC system facilitates co-optimization of energy and reserve markets

SCs with swing intrinsically function as both energy and reserve products, eliminating

the need to provide separate eligibility requirements and settlement processes for energy

versus reserve services.

(vi) The SC system supports forward-market trading of energy and reserve

The offer price of an SC, determined through market processes, compensates the

SC issuer for a guarantee of service availability. In contrast, the performance payment

method of an SC, appearing among its contractual terms, determines how the SC issuer

is to be compensated ex post for actual services rendered in real-time operations.
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(iv) The SC system permits resources to offer flexible service availability

SCs with swing permit the providers of these contracts to be compensated for flexi-

bility in offered services, such as offered exercise times, begin-times, end-times, down/up

ramp rates, and down/up power levels. Moreover, the ability of one or more resources to

offer services in the combined form of an SC portfolio (GenPort) can enhance the ability

of resources to obtain appropriate compensation for the full value of their services.

(v) The SC system gives system operators flexibility in their real-time use of offered

services

SCs with swing permit system operators who procure these SCs to implement the

services offered in these SCs in a flexible manner during real-time operations.

(vii) The SC system encourages accurate load forecasting and the accurate following of

real-time dispatch instructions

Rewards and/or penalties can be incorporated into the performance payment methods

φ appearing among the contractual terms of SC demand bids to encourage LSEs and

other wholesale intermediaries who bid for services on behalf of retail customers to submit

bids that accurately reflect the service needs of these customers. Similarly, rewards

and/or penalties can be incorporated into the performance payment methods φ appearing

among the contractual terms of SC supply offers to encourage service suppliers to follow

real-time service performance instructions with high accuracy.

(viii) The SC system permits resources to internally manage unit commitment and generation-

capacity constraints

By offering an SC for a particular operating period, a resource is guaranteeing that

it can feasibly perform the services represented in this SC during this period. For gen-

erators, this feasibility includes the assurance that power generation units with suitable

capacities will be synchronized to the grid as necessary to perform these services.
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(ix) The SC system permits robust-control management of uncertain net load

Under the SC system, the ISO considers in advance of an operating period how much

swing (flexibility) will be needed in cleared SCs to cover a suitably wide corridor around

an expected net load profile for this operating period. The SC system thus provides a

robust-control alternative to standard stochastic formulations for SCUC/SCED requiring

detailed specifications of net load scenarios and scenario probabilities.

(x) The SC system eliminates need for out-of-market payment adjustments

SC offer prices for service availability and SC performance payments for service per-

formance provide full compensation for all rendered value, without need for additional

market or out-of-market (OOM) adjustments.

(xi) The SC system reduces the complexity of market rules

Properties (i)-(x) reduce the complexity of power market rules, hence the opportunity

for market participants to game these rules for own advantage.
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CHAPTER 3. AN IMPROVED METHOD FOR THE

SHORT TERM FORECASTING OF ELECTRIC POWER

MARKET PERFORMANCE WITH INCREASED

PENETRATION OF RENEWABLE ENERGY

3.1 Introduction

Recently, several environmental and electricity market policies have been introduced

in an attempt to increase the share of renewable energy in power markets. For example,

the California Renewables Portfolio Standard Program requires investor-owned utilities,

electric service providers, and community choice aggregators to increase procurement

from eligible renewable energy resources to 33% of total procurement by 2020. The pen-

etration of renewable energy mainly affects electric power markets in two ways. First,

it increases volatility and uncertainty in a Real-Time Market (RTM) because renewable

resources are non-dispatchable. When the penetration of renewable energy reaches rel-

atively high levels, characteristics and operations of the current power system will be

significantly changed and additional costs will be incurred in order to ensure sufficient

resources for system reliability. Second, it decreases the market price and the dispatch

level of conventional generation in a day-ahead and a real-time market. This can decrease

profit of conventional generation. Thus it can change investment and operation plans

of conventional generation [36]. When it comes to dealing with new coming challenges,

the precise forecasting of system variables, such as Locational Marginal Prices (LMPs),
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generation dispatch levels and power flows in transmission lines, becomes more difficult

and more important for both market participants and system managers.

Several studies have focused on the forecasting of the system variables. Specifically,

electricity price forecasting methods have been developed in several ways. Aggarwal

et al. [2] provides an extensive review of electricity price forecasting methods. Two of

the most widely used methods are stochastic time series and causal models. Examples

of stochastic time series are autoregressive (AR), moving average (MA), autoregressive

moving average (ARMA), autoregressive integrated moving average (ARIMA), and gen-

eralized autoregressive conditional heteroskedastic (GARCH). Examples of causal models

are transfer function and ARMA with exogenous variables (ARMAX) models. Aggar-

wal et al. also provide extensive reviews of artificial intelligence models in electricity

price forecasting, such as multilayer feed forward neural networks (FFNN), radial basis

function networks (RBF), support vector machines (SVM), self-organizing maps (SOM),

recurrent neural networks (RNN), and so on.

The transmission congestion forecasting methods have been developed based on time

series to predict shadow prices of transmission lines [56] and also based on sequential

Monte Carlo simulation [63]. Løland et al. [58] suggests semi-naive predictor comparing

the statistics with several time series models for the congestion forecasting. Bo and Li [10]

and Li and Bo [55] consider LMPs and congestion under load uncertainty and under load

variation respectively. Most of time series and artificial intelligence forecasting models

for the power system variables deal with only one type of system variable at a time. Also,

these models do not consider the physical attributes of the power system that govern

system variable characteristics.

On the other hand, structural simulation methods can forecast the system variables

at a time and fully reflect the physical attributes of the power system, such as system

operating requirements and constraints. Two structural simulation methods are mainly

used: i) a market assessment and portfolio strategies (MAPS) algorithm developed by GE
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Power System Consulting [5], and ii) the UPLAN software developed by LLC Consult-

ing [23]. These simulation models require more specified input variables than statistical

models, such as bidding behavior, generating unit data, transmission network data, fuel

prices, demand forecasts. Also, computational costs of these method are very high.

Zhou et al. [98] proposes a new short-term forecasting algorithm for congestion, LMPs,

and other power system variables based on the concept of “system patterns (SPs)” in

the conventional power system. Specifically, this forecasting algorithm generates short-

term forecasts for the system variables by separating the load space into convex sub-load

spaces, where each sub-load space is a collection of loads that leads to the same physical

status for each generation and transmission line. This method derives a linear-affine

mapping between interiors of the sub-load spaces and the system variables. This method

has mainly two advantages: i) it enables large-scale power system forecasts with less

computational costs, and ii) it permits more accurate forecasting to be obtained through

DC-OPF solutions than time series models by considering the physical constraints of the

power system. The validity of the system pattern forecasting method is supported by

means of an NYISO case study.

Uncertainty and volatility caused by renewable energy integration can change not

only system variables but also system patterns, given conventional fixed load in the

power system. Non-dispatchable renewable energy is treated as negative load in power

system operations and it determines system patterns together with conventional fixed

load. Thus considering penetration of non-dispatchable renewable energy in the system

pattern method is necessary.

This study incorporates non-dispatchable renewable energy into the conventional sys-

tem pattern method for the short-term forecasting of power markets. In addition, this

study clarifies topological aspects of system pattern regions in net load space. This study

also provides a linear-affine mapping between net load and CO2 emissions that permits

CO2 emission forecasts to be derived from forecasted or actual load.
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Moreover, this study introduces the concept of an empirically-based system pattern

transition matrix. This matrix can be applied to broaden the scope of system pattern

method applications to permit status forecasting of system variables. Also, as will be

clarified below, this paper investigates how the extended system pattern method can be

used to classify potential future load scenarios into a smaller number of scenarios than

required by other forecasting techniques.

This paper is organized as follows. Section 5.2 provides a review of the basic system

pattern method and explains how I have extended this method by incorporating non-

dispatchable renewable energy and CO2 emissions. Also, this section introduces the

concept of an empirically-based system pattern transition matrix and its applicability

to the status forecasting of the system variables and outlines the applicability of the

extended system pattern method to classify realized loads into the corresponding system

pattern. The verification and performance test and the applicability of the proposed

extended method are demonstrated in Section 3.3 by means of illustrative simulations

conducted for a 5-bus test system based on Midcontinent Independent System Operator

(MISO) data. Concluding remarks are given in Section 4.7.

3.2 Method

3.2.1 Basic Vs. Extended System Pattern Method

As will be clarified below, distinct from the basic system pattern method, the ex-

tended system pattern method i) incorporates non-dispatchable renewable energy re-

sources, ii) broadens the scope of the basic system pattern method to permit the short-

term forecasting of CO2 emissions as well as other system variables, iii) introduces the

concept of an empirically-based system pattern transition matrix and its applicability to

the short-term status forecasting of system variables, and iv) enlarges the applicability of

the extended system pattern method to a load scenario reduction technique. Figure 3.1
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specifically compares the extended system pattern method with the basic system pattern

method.

Figure 3.1: Basic vs. extended system pattern method

3.2.2 Review of Basic System Pattern Method

3.2.2.1 Standard DC-Optimal Power Flow (DC-OPF) Problem

Consider a wholesale power market system with K buses (k ∈ K), T transmission

lines (τ ∈ T ) and I conventional dispatchable thermal generators (i ∈ I). Without loss

of generality, assume that each bus k has load, Lk, and generation from dispatchable

conventional thermal generators, Pk, for k = 1, ..., K. Assume that thermal generation

at bus k has a quadratic total cost function with a linear coefficient, ak, a quadratic

coefficient, bk, and no fixed costs.1

1Fixed costs do not affect finding optimal solutions because fixed costs drop out in the process of
getting first order conditions.
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Let the objective of the system operator in every time period be to minimize total

cost subject to load balance, transmission line flow limits and generation capacity limits.

Then the standard the standard DC Optimal Power Flow (OPF) formulation with a

lossless transmission system can be constructed as follows:

min
Pk

K∑
k=1

[akPk + bkP
2
k ] (3.1)

s.t.
K∑
k=1

Pk −
K∑
k=1

Lk = 0 : λ (3.2)

K∑
k=1

βkτ [Pk − Lk] ≤ F+
τ : µ+

τ for τ = 1, ..., T (3.3)

−
K∑
k=1

βkτ [Pk − Lk] ≤ F−τ : µ−τ for τ = 1, ..., T (3.4)

Pk ≤ Cmax
k : ψmaxk for k = 1, ..., K (3.5)

−Pk ≤ Cmin
k : ψmink for k = 1, ..., K (3.6)

In these equations, βkτ means the generation shift factor which measures how 1 MW

injection of generation at bus k affects the transmission line τ . Equation (3.2) expresses

the system balance constraint which guarantees that total generation is equal to total

load. Equations (3.3) and (3.4) represent transmission line flow limit constraints in a

positive and a negative direction respectively. Equations (3.5) and (3.6) denote upper

and lower generation capacity limits.

3.2.2.2 Basic System Patterns and System Pattern Regions

Zhou et al. [98] introduces the idea of a system pattern which denotes structural

generation capacities and transmission line conditions as “consisting of a vector of flags
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indicating the marginal status of committed generation and the congestion status of

available transmission lines at any given system operating point”. Each transmission line

is categorized as positively congested, negatively congested or not congested adopting

the convention that, for each transmission line, one direction of power flow is positive

and the opposite direction of power flow is negative.

Table 3.1: Flags used for system pattern

Generating units Transmission lines

Status Min Marginal Max Neg Con- No Con- Pos Con-

capacity unit capacity gestion gestion gestion

Flag -1 0 1 -1 0 1

Specifically, given I conventional thermal generators and T transmission lines, the

system pattern (SP) can be represented as the vector form:

SP = (g1, ..., gi, ...gI , l1, ..., lτ , ..., lT ) (3.7)

where gi denotes the power generation flag for generating unit i and lτ denotes the

congestion flag for transmission line τ .

Each flag has three statuses. Mathematically, the total number of system patterns is

3I+T . Therefore, we expect that we may observe large numbers of system patterns in a

huge power system. However, the total number of system patterns includes systemati-

cally infeasible patterns. For example, suppose that there is no generation in the power

system, then transmission lines can not be congested. Moreover, only a limited num-

ber of system patterns are realized in real world power systems. For example, although

the Midcontinent Independent System Operator (MISO) has 42,521 network buses and

60,009 generating units, at most 35 constraints were binding for each particular hour in

the DAM during 2012 [65, 66].
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System patterns contain the information of the system status at any given time.

In addition, changes of system patterns imply changes of binding generation capacities

and transmission line limit constraints in the optimization problem. Thus, some system

pattern changes can drastically change values of system variables, such as LMPs, power

generation levels and power flows in transmission lines.

Zhou et al. [98] applies convex polytopes to constitute load space coverings called

System Pattern Regions (SPRs). SPRs are determined by capacity and transmission

line limit constraints of the DC-OPF problem. A collection of load in the same SPR

corresponds to a unique system pattern.

For example suppose a specific power system which has two buses (Bus 1, Bus 2) and

one and one transmission line (TL). Each bus has one conventional thermal generator

(G1 or G2) and one load (L1 or L2). G1 has lower marginal cost than G2 in generating

the same amount of power. The minimum and the maximum capacities of each conven-

tional generator are 0MW and 50MW respectively. The transmission line constraints are

given by −50MW ≤ TL ≤ 50MW and define the positive power flow when power flows

from Bus 1 to Bus 2. Figure 3.2 describes this specific two-bus example.

Figure 3.2: Description of two-bus example

Figure 3.3 illustrates all feasible SPRs of the specific two-bus example. Mathemati-

cally, the total number of system patterns (or equivalently SPRs) is 27 (= 32+1). However,

only 9 system patterns are feasible among these 27 system patterns. DC-OPF solutions

do not exist when collections of load are located in the “Infeasible Area” because col-

lections of load in this area violate at least one of generating capacity or transmission

line limit constraints in the DC-OPF problem. Thus, this study does not consider the
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infeasible area. The probability of each system pattern realization depends on the area

of its corresponding SPR in the feasible load space. SPRs can be open, closed, or neither

open nor closed sets.

Figure 3.3: System pattern regions for the two-bus example

Also, each feasible SPR corresponds to a unique system pattern and each unique

system pattern can be denoted in the vector form described in equation (3.7).

SPR1 ⇒ SP1 = (−1,−1, 0), SPR2 ⇒ SP2 = (0,−1, 0)

SPR3 ⇒ SP3 = (1,−1, 1), SPR4 ⇒ SP4 = (1,−1, 0)

SPR5 ⇒ SP5 = (1, 0, 1), SPR6 ⇒ SP6 = (1, 0, 0) (3.8)

SPR7 ⇒ SP7 = (1, 1, 1), SPR8 ⇒ SP8 = (1, 1, 0)

SPR9 ⇒ SP9 = (1, 1,−1)

3.2.2.3 Basic Linear-Affine Mapping

The system pattern method is structurally constrained by the physical conditions of

power systems. The system pattern method needs to be classified and defined under the

same operation plan. Thus system pattern data need to be classified for each system

operation plan in practice.
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For empirical applications, abundant historical data are necessary to collect sufficient

samples of system patterns. Thus, to apply the system pattern method to a power

system, this system needs to be mature. Therefore, hereafter, this study assumes that

the power system under consideration is a mature system functioning under a normal

system operation plan.

Zhou et al. [98] shows that a mapping between load and system variables can be

expressed as a linear-affine function.

Proposition 1. Suppose that a standard DC-OPF formulation with fixed load and

quadratic generation cost function is used by a system operator to determine system

variable solutions. Then, conditional on any given system patterns, the load space can be

covered by convex polytopes such that: i) the interior of each convex polytope corresponds

to a unique system pattern and ii) the system variable solutions can be expressed as a

linear-affine function of the distributed load vector within the interior of each convex

polytope.

A linear-affine function between load and system variables for system pattern j ∈ J

where J is the set of system patterns can be expressed as follows:

SV j = JSV,jLj +OSV,j (3.9)

where SV j denotes a K×1 system variable vector, Lj denotes a K×1 load vector, JSV,j

denotes a K×K sensitivity matrix and OSV,j denotes a K× 1 ordinate vector when SV

denotes the generation dispatch or LMP, or SV j denotes a T × 1 system variable vector,

JSV,j denotes a T ×K sensitivity matrix and OSV,j denotes a T ×1 ordinate vector when

SV denotes power flows in the transmission line. For ease of exposition, hereafter, this

paper focuses on the case when SV denotes the generation dispatch or LMP without loss

of generality.
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The sensitivity matrix and ordinate vector in a linear-affine function can be estimated

from historical data for each system pattern j. Suppose that the system pattern j is

historically observed nj times. Also assume that SV h,j denotes a K × nj historically

observed system variable matrix and Lh,j denotes a K × nj historically observed load

matrix corresponding to the system pattern j. Then the multivariate least squares

method [46] can be applied to estimate JSV,j and OSV,j as follows:

[
ĴSV,j|ÔSV,j

]
= SV h,jX ′(XX ′)−1 (3.10)

where ĴSV,j is the estimate for JSV,j, ÔSV,j is the estimate for OSV,j, X =

 Lh,j

1

, and

1 is an 1× nj vector consisting of entirely 1s.

3.2.2.4 Forecasting Procedure for Basic System Pattern Method

By combining these estimates in equation (3.10) with the linear-affine function in

equation (3.9), system variables can be forecasted for any given forecasted load as fol-

lows. First, estimate SPRs from total historically observed load data. Given any system

pattern, consider a collection of sufficiently large historically observed load data. Sec-

ond, partition this collection of historical load into subsets, one subset for each distinct

system pattern. For each subset of load, the convex hull in the load space that covers

this subset of load can be established by the QuickHull algorithm [5]. Each convex hull

corresponds to a unique system pattern. Third, find the estimated SPR corresponding

to the forecasted load. Any forecasted load can be associated with one of these estimated

SPRs through the probabilistic point inclusion test described in Zhou et al. [98]. Third,

forecast the system variables given the forecasted load by combining estimates of the

sensitivity matrix and the ordinate vector corresponding to the estimated SPR for the

forecasted load.
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For example, the estimation of the SPR corresponding to the system pattern j,

SPRE,j, can be estimated from Lh,j by the Quick Hull algorithm. Suppose that the

forecasted load, Lf , corresponds to the SPRE,j as determined from a point inclusion

test. Denote the forecasted load corresponding to the system pattern j as Lf,j. Finally,

forecast the system variables, SV f,j, given Lf,j, by using the estimates ĴSV,j and ÔSV,j,

and the following linear-affine function.

SV f,j = ĴSV,jLf,j + ÔSV,j (3.11)

3.2.3 Extended System Pattern Method

3.2.3.1 Extended DC-OPF Problem

The basic DC-OPF problem can be extended by incorporating renewable energy.

Similar with the basic DC-OPF case, consider a wholesale power market system with K

buses (k ∈ K), T transmission lines (τ ∈ T ), I conventional thermal generators (i ∈ I)

and I renewable power generators (̃i ∈ I). Without loss of generality, assume that each

bus k has load, Lk, generation from conventional thermal generators, Pk, and generation

from renewable energy resources, PW
k , for k = 1, ..., K. Assume that the conventional

generation and the renewable energy resources have quadratic total cost functions with

linear and quadratic coefficients ak, bk and aWk , bWk respectively.

Renewable energy has very low variable cost. Thus, this study assumes that the

variable cost of renewable energy is zero, i.e., aWk and bWk are set to zero. This implies

that renewable energy is cleared in most cases if total load is greater than total renewable

generation and if power systems have enough available transmission capacity. In practice,

most of electric power markets have total renewable energy capacity less than 20% of

their total nameplate capacity. This amount is usually quite a bit lower than total load.

For this reason, this study assumes that renewable energy is always cleared. In addition,

renewable energy is variable and non-dispatchable. Thus non-dispatchable renewable
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energy can be treated as an exogenous variable in the power system. By incorporating

non-dispatchable renewable energy, the basic DC-OPF problem can be replaced by the

extended DC-OPF problem as follows:

min
Pk

K∑
k=1

[akPk + bkP
2
k ] (3.12)

s.t.
K∑
k=1

Pk +
K∑
k=1

PW
k −

K∑
k=1

Lk = 0 : λ (3.13)

K∑
k=1

βkτ [Pk + PW
k − Lk] ≤ F+

τ : µ+
τ for τ = 1, ..., T (3.14)

−
K∑
k=1

βkτ [Pk + PW
k − Lk] ≤ F−τ : µ−τ for τ = 1, ..., T (3.15)

Pk ≤ Cmax
k : ψmaxk for k = 1, ..., K (3.16)

−Pk ≤ −Cmin
k : ψmink for k = 1, ..., K (3.17)

The meaning of parameters and constraints in the extended DC-OPF problem is

identical with the basic DC-OPF case. It is well known that the LMP at each bus k is

equivalent to the sum of energy and congestion shadow price components.

LMPk = λ+
T∑
τ=1

βkτµ
+
τ +

T∑
τ=1

βkτµ
−
τ (3.18)

In the extended DC-OPF problem, load and non-dispatchable renewable power are

exogenous variables and they share same parameters at each bus. Therefore, we can

define net load at bus k, LNETk , as load minus non-dispatchable renewable power at bus

k and substitute it in place of Lk − PW
k in the extended DC-OPF problem. For more

compactness, generation capacity and transmission constraints can be expressed as vector
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forms; let C denote a vector of capacity limits; let F denote a vector of transmission

limits; and let ᾱ′ denote a 2K × K matrix consisting of -1, 1 or 0. The element of ᾱ′,

αkk′ , would be -1 or 1 when it corresponds to −Cmin
k or Cmax

k respectively; otherwise, it

would be 0. Then the previous extended DC-OPF problem can be rewritten as follows:

min
Pk

K∑
k=1

[akPk + bkP
2
k ] (3.19)

s.t.
K∑
k=1

Pk −
K∑
k=1

LNETk = 0 : λ (3.20)

β̄′P− β̄′LNET ≤ F : µ (3.21)

ᾱ′P ≤ C : ψ (3.22)

where

ᾱ′ =



α11 α21 · · · αK1

α12 α22 · · · αK2

...
... αkk′

...

α1(2K) α2(2K) · · · αK(2K)



β̄′ =



β11 β21 · · · βK1

β12 β22 · · · βK2

...
... βkτ

...

β1(2T ) β2(2T ) · · · βK(2T )


P = [P1, P2, ..., PK ]′

LNET = [LNET1 , LNET2 , ..., LNETK ]′
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C = [C1, C2, ..., C2K ]′

F = [F1, F2, ..., F2T ]′

3.2.3.2 Extended System Patterns and System Pattern Regions

The system patterns in the basic method can be directly applied to the extended

method by replacing the load space with the net load space, because SPRs are invari-

ant under the same physical constraints of the power system. The forecasting method

for short-term load has been developed in several ways by previous researchers, and is

now quite accurate. However, non-dispatchable renewable energy, such as wind and so-

lar power, is more difficult to forecast accurately because it totally depends on weather

conditions which are affected by many random variables. In practice, the day-ahead

load forecasting error is usually less than 3% [2], whereas the wind power forecasting

error is approximately 20% [54]. Therefore, this study assumes that short-term DAM

conventional load is deterministic (forecasted without error) but that short-term DAM

non-dispatchable renewable energy is stochastic and hence forecasted with error. Con-

sequently, as will be clarified below, the transition probabilities governing the system

pattern corresponding to any given net load depend on the non-dispatchable renewable

power generation probability density function.

Consider an extended two-bus example that is identical to the previous two-bus model

depicted in Fig. 3.2 except it includes non-dispatchable wind power generators G1W and

G2W at Bus 1 and Bus 2 respectively. Let each wind power generator have minimum

and maximum capacities 0MW and 20MW respectively. This extended two-bus example

is depicted in Fig. 3.4.

Figure 3.5 illustrates the SPRs and system pattern changes when wind power gener-

ation is incorporated into the conventional power system. For simplicity, it is assumed
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Figure 3.4: Description of extended two-bus example

that Bus 1 is geographically far away from Bus 2, so that the wind power generation

at Bus 1 and Bus 2 are uncorrelated. Also, it is assumed that, with probability one,

no wind blows at Bus 2 during the specific time period under consideration, and that

the wind power generation at Bus 1 is governed by the wind power probability density

function depicted at the bottom of Fig. 3.5. This wind power probability density func-

tion is depicted in the opposite direction to net load because non-dispatchable renewable

energy is treated as negative load. Then net load decreases as wind power increases.

Point A in this depicted probability density function denotes the net load when wind

power is not generated at either Bus 1 or Bus 2. The point A moves toward the left

as wind power generation at Bus 1 increases and the transition probabilities governing

the system pattern change at point A depend on the wind power generation probability

density function at Bus 1.2

3.2.3.3 Extended Linear-Affine Mapping

The basic linear-affine relation can be extended to incorporate non-dispatchable re-

newable energy by substituting net loads in place of conventional loads. Moreover, this

extended linear-affine function relation can be used to map net loads into CO2 emissions.

All generation capacities and transmission constraints for the extended DC-OPF

problem depend linearly on net loads. Thus, each feasible combination of binding con-

straints corresponds to a unique convex polytope in the net load space. Consequently,

2The assumption that only Bus 1 has wind power generation can be easily relaxed to have wind power
generation at each bus. In this case, the transition probabilities governing system pattern changes at
point A depend on the joint probability density function for all wind power generation.
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Figure 3.5: System pattern regions for the extended two-bus example

the system pattern method can be defined for the interior of the sub-load spaces. By in-

cluding net load and the relationship between CO2 emissions and net loads, Proposition

1 in Zhou et al. [97] can be extended to the following Proposition 2:

Proposition 2 Suppose that an extended DC-OPF formulation with net load and

quadratic generator cost functions is used by a system operator to determine system

variable solutions. Then, conditional on any given system patterns, the net load space

can be covered by convex polytopes such that: i) the interior of each convex polytope

corresponds to a unique system pattern and ii) the system variable solutions and CO2

emissions can be expressed as linear-affine functions of the net load vector.3

The extended linear-affine function between net load and the system variables, includ-

ing CO2 emissions, can be expressed in a form similar to the basic linear-affine function

by replacing load with net load in equation (3.9), as follows:

SV j = JSV,jLNET,j +OSV,j (3.23)

where J is the collection of system patterns, and LNET,j denotes a net load vector

corresponding to system pattern j, j ∈ J . Also, SV j, JSV,j and OSV,j denote the

3Proposition 2 is proved in Appendix B.
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system variables (including CO2 emissions), the sensitivity matrix, and the ordinate

vector corresponding to system pattern j; they have the same meanings and dimensions

as in the case of the basic linear-affine function.

As for the basic system pattern case, the multivariate least squares method can be

applied to equation (3.23) to obtain the estimates for JSV,j (ĴSV,j) and the estimate for

OSV,j (ÔSV,j), as follows:

[
ĴSV,j|ÔSV,j′

]
= SV h,jXNET ′(XNETXNET ′)−1 (3.24)

where XNET =

 LNET,h,j

1

, LNET,h,j denotes a K × nj historically observed net load

vector, and 1 is an 1×nj vector consisting entirely of 1s, as for the basic system pattern

method.

3.2.3.4 Forecasting Procedure for Extended System Pattern Method

The forecasting procedure for the extended system pattern method is similar to the

procedure for the basic system pattern method developed in Section 3.2.2.4. By com-

bining the estimates in equation (3.24) with the linear-affine function in equation (3.23),

system variables can be forecasted for any given forecasted net load as follows. First,

estimate SPRs from total historically observed net load data. Given any system pattern,

consider a collection of sufficiently large historically observed net load points. Second,

partition this collection of historical net load into the subsets, one subset for each dis-

tinct system pattern. For each subset of net load, the convex hull in the net load space

that covers this subset of net load can be established by the QuickHull algorithm [5].

Each convex hull corresponds to a unique SPR. Third, find the estimated SPR corre-

sponding to the forecasted net load. Any forecasted net load can be associated with

one of these estimated SPRs through the probabilistic point inclusion test described in

Zhou et al. [98]. Fourth, forecast the system variables given the forecasted net load by
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combining estimates of the sensitivity matrix and the ordinate vector corresponding to

the estimated SPR for the forecasted net load.

For example, estimation of the SPR corresponding to the system pattern j, SPRE,j,

can be estimated from LNET,h,j by the Quick Hull algorithm. Suppose that the forecasted

net load, LNET,f , corresponds to the SPRE,j as determined from a point inclusion test.

Denote the forecasted net load corresponding to the system pattern j as LNET,f,j. Finally,

forecast the system variables, SV f,j, given Lf,j, by using the estimates ĴSV,j and ÔSV,j

and the following linear-affine relationship.

SV f,j = ĴSV,jLNET,f,j + ÔSV,j (3.25)

3.2.4 Constructing Empirically-Based System Pattern Transition Matrix

and Its Applicability

3.2.4.1 Empirically-Based System Pattern Transition

Matrix Construction

From historically observed system pattern data, an empirically-based system pattern

transition matrix can be constructed for each particular hour. Suppose the current time

is Day D at Hour H and historically observed system pattern data since the beginning of

Day D−K are available for constructing the empirically-based system pattern transition

matrix. In addition, assume that J is the total number of observed system patterns from

the historically observed data. Then the system pattern transition matrix from Hour H

to the next Hour H + 1, denoted by ΓH+1|H , is a J × J square matrix as follows:
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ΓH+1|H =



γ
H+1|H
11 γ

H+1|H
12 · · · γ

H+1|H
1J

γ
H+1|H
21 γ

H+1|H
22 · · · γ

H+1|H
2J

...
... γ

H+1|H
jj′

...

γ
H+1|H
J 1 γ

H+1|H
J 2 · · · γ

H+1|H
JJ


(3.26)

where γ
H+1|H
jj′ denotes the sample probability of the system pattern transition from pat-

tern j at Hour H to pattern j′ at Hour H + 1. The component γ
H+1|H
jj′ is calculated by

dividing the total frequency of the historically observed system pattern transition from

pattern j at Hour H to pattern j′ at Hour H + 1 by the total frequency of the histor-

ically observed system pattern j at Hour H.4 The transition matrix has the following

well-known property:

ΓH+2|H = ΓH+1|H × ΓH+2|H+1 , ..., ΓH+h|H = ΓH+1|H × · · · × ΓH+h|H+h−1 (3.27)

Thus, the system pattern transition matrix from Hour H to H+h can be easily calculated

by means of matrix multiplications.

Net load patterns can be different by weekday and weekend, seasons, and months (or

combinations of these factors). For better goodness of fit, the historically observed system

pattern data can be segmented based on these factors and their combinations. The

segmented empirically-based system pattern transition matrix can be constructed from

the corresponding segmented data. For example, the system pattern transition matrix

from Hour 12 to Hour 13 during a weekday can be constructed from the corresponding

historical data. As the number of segmentations increases, however, the sample size

of each specific system pattern transition matrix decreases. Thus, a sufficiently large

amount of historically observed system pattern data is necessary for more segmentation.

4 These numbers can be directly obtained from the historical system pattern data.
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3.2.4.2 Applicability to Status Forecasting of System Variables

System patterns are derived from solutions of DC-OPF problems subject to the phys-

ical power system constraints. Therefore, historically observed system pattern data con-

tain reduced forms of information for the power generation levels and the line congestion.

For each generating unit i, we can define sets corresponding to i) a minimum power

level system pattern set, SP i,−1, ii) a marginal power level system pattern set, SP i,0,

and iii) a maximum power level system pattern set, SP i,+1, as follows:

SP i,−1 = {∪SPj, j ∈ J : gi = −1} (3.28)

SP i,0 = {∪SPj, j ∈ J : gi = 0} (3.29)

SP i,+1 = {∪SPj, j ∈ J : gi = 1} (3.30)

Assume that the system pattern at Hour H is j. Then, for each generator i, the

sample probability of minimum capacity generation at Hour H + h conditional on the

given SPj at Hour H, Pri,−1H+h|H , the sample probability of marginal generation at Hour

H + h conditional on the given SPj at Hour H, Pri,0H+h|H , and the sample probability of

maximum capacity generation at Hour H + h conditional on the given SPj at Hour H,

Pri,+1
H+h|H , can be expressed as follows:

Pri,−1H+h|H =
∑

j′∈SP i,−1

γ
H+h|H
jj′ (3.31)

Pri,0H+h|H =
∑

j′∈SP i,0
γ
H+h|H
jj′ (3.32)

Pri,+1
H+h|H =

∑
j′∈SP i,+1

γ
H+h|H
jj′ (3.33)

The status of each transmission line can also be forecasted from this matrix. For each

transmission line τ ∈ T , we can define sets by congestion status: i) a negative congestion

system pattern set, SP τ,−1, ii) a non-congestion system pattern set, SP τ,0, and iii) a

positive congestion system pattern set, SP τ,+1. These sets are defined as follows:
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SP τ,−1 = {∪SPj, j ∈ J : lτ = −1} (3.34)

SP τ,0 = {∪SPj, j ∈ J : lτ = 0} (3.35)

SP τ,+1 = {∪SPj, j ∈ J : lτ = +1} (3.36)

Then the sample probability of negative congestion at Hour H+h conditional on the

given SPj at Hour H, Prτ,−1H+h|H , the sample probability of no congestion at Hour H + h

conditional on the given SPj at Hour H, Prτ,0H+h|H , and the sample probability of positive

congestion at Hour H + h conditional on the given SPj at Hour H, Prτ,+1
H+h|H , can be

denoted as follows:

Prτ,−1H+h|H =
∑

j′∈SP τ,−1

γ
H+h|H
jj′ (3.37)

Prτ,0H+h|H =
∑

j′∈SP τ,0
γ
H+h|H
jj′ (3.38)

Prτ,+1
H+h|H =

∑
j′∈SP τ,+1

γ
H+h|H
jj′ (3.39)

Thus this approach can forecast the status of the system variables by means of the

corresponding calculated probabilities although it cannot provide the specific forecasting

values of the system variables.

3.2.5 Applicability of Extended System Pattern Method to

Load Scenario Reduction

Centrally-managed wholesale power markets in the U.S. are structured as forward

markets in advance of real-time operations. To make informed decisions in the forward

markets for electric energy and reserve, market managers would ideally like to be able to

forecast system variables under the set of all possible load scenarios [70]. However, the set

of all possible load scenarios is too large to consider in practice. To reduce computational
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complexities and time requirements, forecasting models with large number of scenarios

are often approximated by models with relatively small number of scenarios [44].

The system pattern method can be applied to load scenario reduction processes in

two ways. First, it can reduce all net load variations into a limited number of scenarios.

As pointed out in Section 3.2.2, although the total number of system patterns in a huge

power system is expected to be a large number, the total number of feasible system

patterns would be less than the total number of system patterns and the total number

of historically observed system patterns would be even less than the total number of

feasible system patterns. Thus, the historically observed system patterns can be small

enough to handle in practice, even in a huge power system.

Second, the system pattern method can provide reasonable criteria for the classi-

fication of load scenarios. Each SPR corresponds to a unique combination of binding

constraints in the power system. Any severe net load volatility cannot affect power sys-

tem constraints, such as the status of the generating units and the transmission line

congestion, if the load fluctuations are bounded within the same SPR. Thus any net load

volatility within the same SPR is manageable under the same operating condition (or

binding constraints). Under this circumstance, we can conjecture that the LMP volatil-

ity is relatively lower when the net load fluctuates within the same system pattern, while

the LMP volatility is relatively higher when the net load fluctuates across the system

patterns, because LMPs are piecewise linear functions of net load, hence bigger net load

fluctuations will typically result in bigger LMP deviations.

3.3 Illustrative Simulations

To test the verification and the performance of the extended system pattern method

and its applicability described in Section 3.2.3 - Section 3.2.5, historical data for operat-

ing plans, system variables, loads, and wind power generation are required. In practice,
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however, the full empirical data set for electric power market data is not publicly avail-

able.5 Thus, instead of empirical market data for the system variables, this study use

simulation data (or simulation outcomes) obtained via a specific electric power market

test system given load to demonstrate the validity and the performance of extended sys-

tem pattern method and its applicability for the status forecasting of the system variables

and a scenario reduction method.

Specifically, this study constructs a 5-bus test system based on the AMES wholesale

power market test bed [4] reflecting the physical attributes of MISO. Also, historical net

load data from MISO during July 2013 are used as input data. Given these input data,

simulation outcomes for the system variables during this period are obtained by running

simulation via the 5-bus test system. These net load and simulation outcomes for the

system variables during July 2013 are used as data sets for estimating SPRs, estimating

the sensitivity matrices and the ordinate vectors corresponding to the estimated system

patterns, and constructing the empirically-based system pattern transition matrices.

These estimates are used to forecast the system variables given forecasted net load

data following the procedures described in Section 3.2.3.4. To test the verification of the

extended system pattern method, this study compares forecasted system variables ob-

tained via the extended system pattern method with simulated system variables obtained

via the simulation outcomes given forecasted net load profile.

Also, the 5-bus test system is used to analyze the effects of wind power penetration

on the system pattern frequencies in the DAM and the effects of wind power uncertainty

on the system patterns and the system variables given fixed load in the DAM. These

effects are demonstrated by comparing the simulation outcomes obtained via the 5-bus

test system with wind power penetration with the simulation outcomes obtained via the

5-bus test system without wind power penetration.

5Specific data for operating plan, generating units’ capacities and power generation levels, power
flows in transmission lines, and demand are not publicly available.
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In addition, this study constructs the empirically-based system pattern matrices from

simulation outcomes during July 2013. To demonstrate the applicability of these matrices

in the status forecasting of the system variables, this study compares the forecasted

system pattern obtained via these matrices with the simulated system pattern obtained

via the 5-bus test system for a specific time period.

Finally, this study demonstrates the applicability of the extended system pattern

method to the scenario reduction method based on the total number of realized system

patterns during July 2013. Following subsections provide more details for the illustrative

simulations. Figure 3.6 describes these simulation and demonstration procedures.

Figure 3.6: Verification and performance test procedure
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3.3.1 5-Bus Test System

The 5-bus test system consists of five generation units (G1-G5), six transmission

lines (TL1-TL6), three Load Serving Entities (LSE1-LSE3) and wind power generation

embedded as negative load at Bus 2, Bus 3 and Bus 4 respectively. Power flows in

a transmission line are represented by positive values if power flows from a smaller

numbered bus to a larger numbered bus, otherwise negative. For example, the power

flow in TL1 is represented by a positive value if the power flows from Bus 1 to Bus 2 and as

a negative value otherwise. This test system assumes that the day-ahead market (DAM)

is a market for energy only, ignoring reserve considerations, and that all generating units

are committed for every hour. This 5-bus test system is depicted in Fig. 3.7

Figure 3.7: 5-bus test system
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3.3.1.1 Generating Unit Attributes

To determine the characteristics of the generating units, capacity by fuel type is

assigned based on the 2013 Midwest Independent System Operator (MISO) data [68]

in this test system. The MISO region can be divided into two sub-regions: the MISO

Midwest region and the MISO South region. The MISO South region was integrated

into the pre-existing MISO Midwest region on December 9th, 2013. Thus this study

only focuses on the MISO Midwest region.

The fuel type of generation in the MISO Midwest region includes nuclear, coal, natural

gas, oil, hydro, pumped storage, biomass, and wind. The 2013 MISO Midwest capacity

by fuel type is reported in Table 3.2. For simplicity, this study focuses only on the

thermal generating units (nuclear, coal, natural gas, oil) and on wind power, the largest

renewable energy resource in the MISO Midest region.

Table 3.2: 2013 MISO generation capacity by fuel type

Fuel type Capacity (MW)

Nuclear 8,309

Coal 63,369

Gas 37,876

Oil 3,372

Hydro 1,103

Pumped Storage 2,490

Biomass 752

Wind 12,069

As depicted in the extended DC-OPF problem in Section 3.2.3.1, each generating unit

has a quadratic cost function. The dispatch cost coefficients of a generation unit depend



www.manaraa.com

78

on its fuel type. Cost coefficients by fuel type can be estimated from data provided by

the U.S. Environmental Protection Agency (EPA) [34]. Specifically, Table 4.5 reports

these estimated coefficients from Krishnamurthy et al. [51].

Table 3.3: Dispatch cost coefficients by fuel type

Fuel a ($/MW) b ($/MW2)

Nuclear 15 0.003

Coal 15 0.008

Gas 75 0.020

Oil 35 0.016

To calculate CO2 emissions from thermal generation, this study uses CO2 emission

coefficients by fuel type processed from EIA data.6 CO2 emissions from nuclear and wind

power generation are negligible. Thus this study assumes that no CO2 is emitted from

nuclear and wind power generation. CO2 emission coefficients by fuel type are reported

as CO2 tonnage per megawatt hour (tCO2/MWh) in Table 5.1

Table 3.4: Average CO2 emissions by fuel type (tCO2/MWh)

Fuel Type tCO2/MWh

Nuclear 0.0000

Coal 0.9716

Gas 0.5539

Oil 0.7922

6 http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11

http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11
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For simplicity, the 5-bus test system uses scaled-down MISO Midwest generating

capacity and wind power data that are determined by dividing the data by 80 without

loss of generality. Thermal generating units are assumed to be assigned as depicted in

Table 3.5. By considering practical capacity limits of gas generating units, this study

assumes that G4 consists of four identical gas power plants.

Table 3.5: Capacity by fuel type in the 5-bus test system

Fuel Type Capacity (MW)

G1 Nuclear 104

G2 Oil 42

G3 Coal 450

G4 Gas 473

G5 Coal 342

The MISO Midwest region has three sub-regions: namely, the West, Central, and

East sub-regions. These three sub-regions correspond to Bus 2, Bus 3, and Bus 4 in the

5-bus test system as depicted in Fig. 4.4.

Figure 3.8: 2013 MISO sub-region
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Wind power generation is distributed on Bus 2, Bus 3, and Bus 4 based on the

proportion of wind power generation capacities across the MISO Midwest sub-regions.

Figure 3.9 reports these proportions by sub-region.

Figure 3.9: Wind power capacity proportion by Miwdwest sub-region

3.3.1.2 LSE Attributes

Bus 2, Bus 3 and Bus 5 each have a single representative aggregated LSE in this 5-bus

test system. An LSE has an intermediary responsibility between generating units and

retail customers in electric wholesale power markets. An LSE procures necessary energy

for retail customers by submitting demand bids into the DAM on each day D-1. Based

on the LSE’s regional next-day load forecasting for operating day D, the LSE submits

a demand bid into the DAM in the form of a 24-hour regional load profile for day D.

For simplicity, it is assumed that this load profile is not responsive to price. Historical

exogenous loads for the three MISO Midwest sub-regions are obtained from MISO [68].

3.3.1.3 Data

Load and wind generation, i.e. net load, data are necessary to conduct simulations

based on the 5-bus test system. Operating plan analysis during the daily peak demand

hour is critical for system operations. Thus this study focuses on the hourly load and wind

power generation data in the DAM during the 2013 MISO Midwest peak month (July),

which consists of 744 hours. These data can be obtained from the MISO homepage [68].
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Data for system variables such as LMPs, power generation levels, and congestion in

transmission lines can be obtained via the 5-bus test system by conducting simulations

using the MISO net load data as input data. Through these procedures, we can obtain

data for the system variables during July 2013.

Net loads and simulation outcomes for the system variables corresponding to net loads

during July 2013 are used to test the verification and the performance of the extended

system pattern method and its applicability described in Section 3.2.3 - Section 3.2.5.

3.3.2 Illustration 1: Testing Verification of Extended System Pattern Method

The sensitivity matrix and the ordinate vector for the system variables can be esti-

mated using the simulation outcomes during July 2013 by following the processes de-

scribed in Section 3.2.3.3 for all system patterns. For example, the estimated sensitivity

matrix and the estimated ordinate vector of the system variables including CO2 emissions

for system pattern 7 (SP7) are reported in (3.40) - (3.43).

[
ĴP,7|ÔP,7′

]
=



0.00 0.00 0.00 104.00

−2.45 −1.80 0.00 1713.71

0.00 0.00 0.00 450.00

3.45 2.80 1.00 −2610.56

0.00 0.00 0.00 342.00



(3.40)

[
ĴTL,7|ÔTL,7′

]
=



0.00 0.00 0.00 250.00

−1.33 −0.98 0.00 1003.59

−1.12 −0.82 0.00 563.98

−1.00 0.00 0.00 250.04

−1.00 −1.00 0.00 700.10

1.12 0.82 0.00 −905.98



(3.41)
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[
ĴLMP,7|ÔLMP,7′

]
=



−0.01 −0.01 0.00 40.48

0.14 0.11 0.03 69.54

0.11 0.09 0.03 64.03

0.03 0.03 0.01 48.89

0.00 0.00 0.00 41.97



(3.42)

[
ĴCO2,7|ÔCO2,7

′

]
=



0.00 0.00 0.00 0.00

−1.94 −1.43 0.00 1357.60

0.00 0.00 0.00 437.22

1.91 1.55 0.55 −1445.99

0.00 0.00 0.00 332.29



(3.43)

where ĴP,7, ÔP,7′ , ĴTL,7, ÔTL,7′ , ĴLMP,7, ÔLMP,7′ , and ĴCO2,7, ÔCO2,7
′

are the estimated

sensitivity matrices and the transpose of estimated ordinate vectors for power gener-

ation, power flows, LMPs, and CO2 emissions respectively. The estimated sensitivity

matrices and the estimated ordinate vectors are used to forecast the system variables

given forecasted load profile. The forecasting procedures of the system variables using

these matrices and ordinate vectors are described in Section 3.2.3.4.

To test the verification for the extended system pattern method, this study compares

the forecasted system variables to the simulated system variables given forecasted load

profile. For example, Figure 3.10 provides the forecasted system variables obtained via

the extended system pattern method and the simulated system variables obtained via the

5-bus test system given the MISO Midwest region net load profile on August 30th, 2013.

The forecasted SVs are very similar to the simulated SVs. Thus the extended system

pattern method contains full information of the extended DC-OPF on the relations

between SVs and net load.
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Figure 3.10: Forecasted vs. simulated values of system variables

3.3.3 Illustration 2: Wind Power Penetration Effects on System Patterns

3.3.3.1 Effects of Wind Power Penetration on System Pattern

Frequencies in the Day-Ahead Market

The simulation outcomes during July 2013 show that there are seven system patterns

(SP1-SP7) with/without wind power penetration. Thus the total number of system

patterns in the DAM is not changed with/without wind power penetration in these

illustrative simulations. Flags for these seven system patterns are depicted in Table 3.6.
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Table 3.6: System patterns from simulation outcomes

G1 G2 G3 G4 G5 TL1 TL2 TL3 TL4 TL5 TL6

SP1 1 -1 0 -1 0 0 0 0 0 0 0

SP2 1 -1 0 -1 1 0 0 0 0 0 0

SP3 1 0 1 -1 1 0 0 0 0 0 0

SP4 1 1 1 0 1 0 0 0 0 0 0

SP5 -1 -1 1 0 0 1 0 0 0 0 0

SP6 0 -1 1 0 1 1 0 0 0 0 0

SP7 1 0 1 0 1 1 0 0 0 0 0

Wind power penetration can affect the frequencies of system pattern occurrences in

the DAM. To analyze these effects, this study compares the DAM system pattern fre-

quencies without wind power penetration (fWO) to the DAM system pattern frequencies

with wind power penetration (fW ).

Although the simulation outcomes show that there is no change for the type of realized

system patterns in each case during July 2013, the simulation outcomes show that the

system pattern frequencies with wind power penetration differ from the system pattern

frequencies without wind power penetration during July 2013. When wind penetration

is introduced, the frequencies of SP1 and SP7 are increased, the frequencies of SP2,

SP3, SP4, and SP5 are decreased, and the frequency of SP6 is not changed. Thus the

penetration of wind power can induce system pattern changes in electricity markets.

The specific system pattern frequencies obtained both with and without wind power

penetration during July 2013 are reported in Table 3.7.
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Table 3.7: Frequency of system patterns with/without wind power penetration

SP1 SP2 SP3 SP4 SP5 SP6 SP7 Total

fWO 369 208 41 81 11 25 9 744

fW 438 168 26 69 8 25 10 744

3.3.3.2 Effects of Wind Power Uncertainty on System Patterns

Renewable energy is basically non-dispatchable. Thus, day-ahead wind power fore-

casts typically differ from actual real-time wind power generation. This uncertainty can

be estimated via a kernel probability density estimation for wind power generation [50].

For example, Figure 3.11 depicts the kernel probability density function (PDF) for wind

power generation at Bus 4 estimated from hourly MISO West sub-region wind power

generation data during July 2013.

Figure 3.11: Kernel PDF for wind power generation at Bus 4 during July 2013

To test the possibility of system pattern changes caused by wind power uncertainty

for a specific Hour H, given fixed load, this section focuses on the load at Hour 13 on
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July 23rd, 2013, which is the peak load hour that occurred during 2013. In addition, this

section focuses on the wind power at Bus 4, which is the bus with the largest capacity

proportion of wind power generation in the 5-bus test system.7 The system pattern at

Hour 13 on July 23rd, 2013, is given as SP4.

For sensitivity studies, 1,000 wind power generation samples are drawn from this

kernel PDF. Each sample, together with the given fixed load data for hour H, is then

used to solve the resulting extended DC OPF problem.

The resulting simulation outcomes show that the system pattern at Hour 13 does not

change with probability 0.339, while it changes from SP4 to SP2 with probability 0.087

and changes from SP4 to SP3 with probability 0.574. Thus, wind power uncertainty can

change system patterns given fixed load.

Figure 3.12: Example of system pattern changes under wind power unceratinty

These system pattern changes can cause significant changes for the system variables.

For example, Figure 3.13 depicts LMPs at Bus 1 in results of 1,000 simulation runs. In

this figure, the upper dots labeled as SP4, the middle dots labeled as SP3, and the lower

dots labeled as SP2 describe LMPs when each sample of net load belongs to SP4, SP3,

and SP2 respectively. As we can see, LMPs are slightly changed within the same system

pattern while LMPs are significantly changed across the system patterns.

7 For simplicity, the wind power generation at Bus 2 and Bus 3 are assumed to be zero during Hour
13 for this illustrative case.
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Figure 3.13: Simulation outcome for LMP at Bus 1 under wind power uncertainty

3.3.4 Illustration 3: Applicability of Empirically-Based System Pattern

Transition Matrix to Status forecasting of System Variables

The derivation of empirically-based system pattern transition matrices is explained in

Section 3.2.4.1. Equations (3.44) and (3.45) depict the empirically-based system pattern

transition matrices from Hour 18 to Hour 19 and from Hour 19 to Hour 20 calculated

from the simulation outcomes during July 2013 via the 5-bus test system.

Γ19|18 =



1 0 0 0 0 0 0

0.15 0.85 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0.2 0.8 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0.6 0.4

0 0 0 0 0 0 0



(3.44)
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Γ20|19 =



1 0 0 0 0 0 0

0.27 0.73 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0.5 0.5 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



(3.45)

These transition matrices can be used to forecast the system patterns (or status

of system variables) by following equations (3.26) and (3.27) in Section 3.2.4.1 and by

taking maximum probability system pattern estimate. To demonstrate the applicability

of these transition matrices in system pattern forecasts, this section compares forecasted

system pattern obtained via these matrices with simulated system pattern obtained via

the 5-bus test system for Hour 19 and Hour 20 on August 1st conditional on given system

pattern at Hour 18.

The simulation outcomes report that the system pattern given the net load at Hour 18

on August 1st is SP2. Conditional on SP2 at Hour 18, the probability for the occurrence

of SP1 at Hour 19 on August 1st is 0.15 (= γ
19|18
2,1 ) and the probability for the occurrence

of SP2 at Hour 19 on August 1st is 0.85 (= γ
19|18
2,2 ) obtained from equation (3.44). Thus,

by taking maximum probability system pattern estimate, we can predict that the system

pattern at Hour 19 would be SP2 conditional on SP2 at Hour 18.

Also, by multiplying these two matrices (3.44) and (3.45), we can calculate the

empirically-based system pattern transition matrix from Hour 18 to Hour 20 (3.46).
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Γ20|18 =



1 0 0 0 0 0 0

0.38 0.62 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0.2 0.4 0.4 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



(3.46)

Equation (3.46) reports that, conditional on SP2 at Hour 18 on August 1st, the

probability for the occurrence of SP1 at Hour 20 on August 1st is 0.38 (= γ
20|18
2,1 ) and

the probability for the occurrence of SP2 at Hour 20 on August 1st is 0.62 (= γ
20|18
2,2 ).

Thus, by taking maximum probability system pattern estimate, we can forecast that the

system pattern at Hour 20 would be SP2 conditional on SP2 at Hour 18.

The simulation outcomes report that system patterns at Hour 19 and Hour 20 on

August 1st are both SP2. Thus the predictions for the system patterns using these

transition matrices show the same system patterns with simulation outcomes at Hour 19

and Hour 20 on August 1st as depicted in Table 3.8.

Table 3.8: Illustration of system pattern prediction via transition matrices

Probability Probability Forecasted Simulated

of SP1 of SP2 SP SP

Hour 19 0.15 0.85 SP2 SP2

Hour 20 0.38 0.62 SP2 SP2

Under SP2, we can predict that G1 generates its full capacity level, G2 and G5 do not

generate, G3 and G5 generate less than their capacity levels, and there is no transmission

congestion in the power system.
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3.3.5 Illustration 4: Applicability of Extended System Pattern Method to

Load Scenario Reduction

The total number of possible system patterns for the 5-bus test system is 177,147

(= 35+6). However, as we can see from Table 3.7 in Section 3.3.3.1, only seven system

patterns are actually observed in the simulation outcomes during July 2013.

The variation in system variable predictions within any one SPR can be bounded as

a function of the size of the SPR, and the average system variable outcomes for any one

SPR might exhibit a small enough standard deviation that the deviations can be ignored.

In this case, without much loss of predictive power for system variables, each SPR can

be associated with a single net load, taken to be the average net load within the SPR;

and the system variable predictions associated with this average net load can be taken to

be the system variable prediction for this single net load. Consequently, the number of

net load scenarios can be reduced to only seven scenarios (namely, the average net loads

for the seven SPRs). Thus, the system operator can mainly focus on the seven system

patterns for operation plans. Moreover, as we can see from Fig. 3.13 in Section 3.3.3.2,

the price volatility is relatively low within the same system pattern, while it is relatively

high across system patterns.

Form these illustrations, we can consider the system pattern method as a scenario

reduction techniques because the method can provide the limited number of scenarios

that can be small enough to handle in practice. Also, the system pattern method can

provide reasonable criteria for the classification of load scenarios; i) each system pattern

corresponds to a unique combination of binding constraints in the power system; and

ii) the LMP volatility is relatively lower when the net load fluctuates within the same

system pattern, while the LMP volatility is relatively higher when the net load fluctuates

across the system patterns.
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3.4 Conclusion

Several electric power markets all around the world have increased and will increase

the penetration of renewable energy. Electricity markets become more volatile and uncer-

tain as the penetration of renewable energy resources increases. This can incur additional

operating costs and more frequent contingent events. Under this circumstance, the accu-

rate forecasting of system variables becomes more difficult and more important for both

market participants and system operators.

This study extends the basic system pattern method developed by Zhou et al. [97, 98]

for short-term forecasting in electricity markets with conventional generation to include

generation by renewable resources. Although the current system pattern method does

not consider the penetration of non-dispatchable renewable energy resources, it can be

applied directly to the power system with non-disaptchable renewable energy resources

by substituting net load in place of conventional load. Moreover, this study derives a

linear-affine mapping between net load and CO2 emissions that permits CO2 emission

forecasting. Thus, this extended system pattern method can be used to jointly derive

forecasts of CO2 emissions as well as a wide range of system variables, including LMPs,

generation dispatch levels, and transmission line power flows.

This paper demonstrates that the penetration of renewable energy resources can

change the realization of system patterns. Also, uncertainties embedded in the non-

dispatchable renewable energy can change the system pattern given fixed load. The

transition probabilities governing the system pattern changes depend on the probability

density function of the non-dispatchable renewable power generation.

This study introduces the concept of empirically-based system pattern transition ma-

trix which can be constructed from historical system pattern data. This transition matrix

can be applicable to the prediction of system patterns (or status of system variables).

In addition, the system pattern method can be applicable to a load scenario reduction
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method, because i) each system pattern corresponds to a unique combination of binding

constraints in the power system; and ii) the LMP volatility is relatively lower when the

net load fluctuates within the same system pattern, while the LMP volatility is relatively

higher when the net load fluctuates across the system patterns.

A 5-bus test system is provided to test the verification and the performance of the

extended system pattern method and to illustrate all applicability of the extended system

pattern method presented in this paper. The simulation outcomes from this 5-bus test

system well illustrate the verification of the extended system pattern method and the

performance of its applicability to the status forecasting of system variables and to a

load scenario reduction method.
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CHAPTER 4. A NINE ZONE ELECTRIC POWER

MARKET TEST SYSTEM BASED ON DATA FROM MISO

4.1 Introduction

In a series of reports culminating in a 2003 White Paper [37], the U.S. Federal Energy

Regulatory Commission (FERC) recommended that U.S. energy regions be organized as

day-ahead and real-time wholesale electric power markets centrally operated by non-

profit entities capable of providing fair and impartial management with regard to the

business interests of market participants such as Generation Companies (GenCos) and

Load Serving Entities (LSEs). This design recommends wholesale electric power mar-

kets should be centrally operated by Independent System Operator (ISO). ISO uses

Locational Marginal Prices (LMPs) to reflect local transmission congestion on pricing in

transmission grid. To date, this market design has been adopted by seven U.S. energy

regions managing over 60% of U.S. electric power generation capacity: namely, CAISO,

ERCOT, ISO-NE, MISO, NYISO, PJM, and SPP.

Several test beds for analyzing electric wholesale power markets have been developed

[4, 9, 94, 78]. Among these test beds, this study focuses on one of the open source

test bed, AMES V3.0 [4]. This AMES V3.0 is developed in Java/Python platform. Its

first implementation is 8-zone test system based on data received from the Independent

System Operator of New England (ISO-NE) [51]. AMES wholesale power market test

bed allows the dynamic study of product and design issues for centrally managed electric

wholesale power markets through intensive computational experiments. This study de-
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velops the Midcontinent Independent System Operator (MISO) 9-zone test system based

on AMES.

MISO has integrated the South region into the pre-existing Midwest region since

December 9, 2013. This South region adds over 18,000 miles of transmission, 50,000

MW of generation capacity, and up to 30,000 MW of load into MISO.1 This additional

capacity is around 40% of the established MISO Midwest capacity in 2013. Thus this

integration is expected to cause significant changes in the pre-existing Midwest region.

A MISO 9-zone test system also permits a wide range of implementable sensitivity

studies. To illustrate the applicability, this study reports change of simulated DA LMPs

through a comparative study of a Midwest 7-zone test system prior to the integration of

the South region versus a 9-zone test system after the integration of the South region.

The Midwest 7-zone test system is a special case of the MISO 9-zone test system.2 Thus,

this study focuses on the development of the MISO 9-zone test system without loss

of generality. Simulated DA LMPs are determined through Security Constrained Unit

Commitment (SCUC) and Security Constrained Economic Dispatch (SCED) processes

for both test systems.

This study is organized as follows. Section 4.2 demonstrates the computational plat

form, AMES. Section 4.3 describes the components of the MISO 9-zone test system

construction. Section 4.5 provides an illustration for the sensitivity study to analyze the

LMP changes prior to and after the integration of the South region. Key findings from

the illustrative application are provided in Section 4.6. Finally, concluding remarks are

presented in Section 4.7.

1 https://www.misoenergy.org/WhatWeDo/StrategicInitiatives/

SouthernRegionIntegration/Pages/SouthernRegionIntegration.aspx
2If generation capacities, transmission line limits and loads in the South region are set to zero, then

the MISO 9-zone test system is automatically reduced into the 7-zone Midwest test system.

https://www.misoenergy.org/WhatWeDo/StrategicInitiatives/SouthernRegionIntegration/Pages/SouthernRegionIntegration.aspx
https://www.misoenergy.org/WhatWeDo/StrategicInitiatives/SouthernRegionIntegration/Pages/SouthernRegionIntegration.aspx
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4.2 The AMES Test Bed

In a 2003 White Paper [37] FERC proposed the adoption of market design to improve

electric wholesale power market operations. The key feature of this market design is a

centrally managed two-settlement system operated by independent system operator.

Figure 4.1 depicts two-settlement system consisting of a day-ahead market (DAM)

and a real-time market (RTM). Generating units are committed and scheduled their

generations for next-day operation in the DAM. The RTM is functioned as a balancing

mechanism to manage any residual load-balancing in case of discrepancies between DAM-

scheduled generation and ISO forecasted real-time loads. Transmission congestion is

handled through LMPs in both markets.

Figure 4.1: Two-Settlement System: ISO activities on a typical day D-1

AMES (Agent-based Modeling of Electricity Systems) [4] is an agent-based compu-

tational platform (Java/Python) allowing the systematic study of a dynamic electric

wholesale power market operating under FERC’s two-settlement system.

Figure 4.2 describes an ISO-managed wholesale power market operating during h =

1, 2, ..., over an AC transmission grid in AMES V3.0. Market participants in this test

system include Generation Companies (GenCos) and Load Serving Entities (LSEs). The

GenCos can include not only conventional dispatchable generating units such as thermal
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power plants but also non-dispatchable renewable energy generating units such as wind

and solar power plants. Non-dispatchable renewable energy can be treated as negative

load. The DAM is cleared through Security Constrained Unit Commitment (SCUC)

and Security Constrained Economic Dispatch (SCED), and the RTM is cleared through

SCED in this test bed.

Figure 4.2: Key components of AMES V3.0

If GenCos are committed in the DAM, then unit commitment (UC) costs such as

start-up, no-load and shut-down cost are incurred by the GenCos to synchronize them

to the grid. Also, dispatch costs are incurred by the GenCos to deliver the cleared

amounts of power to the grid. Dispatchable thermal GenCos in AMES can incur both

UC and dispatch costs. For more details, see the Krishnamurthy et al. [51, Section II].

4.3 MISO 9-Zone Test System Construction

This section discusses how to construct and configure the 9-zone test system with

MISO data. The MISO load and generation capacity by fuel type can be obtained

directly from the MISO website. However, this data set is incomplete to construct the
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9-zone test system. Especially, cost structures and technology information of generating

units are necessary for each fuel type. The needed missing data were obtained from

Krishnamurthy et al. [51] and other reliable sources.

4.3.1 MISO Market Topology

MISO is the largest centrally-managed energy market in the U.S. MISO covers all or

most of North Dakota, South Dakota, Nebraska, Minnesota, Iowa, Wisconsin, Illinois, In-

diana, Michigan and parts of Montana, Missouri, Kentucky, Arkansas, Texas, Louisiana,

and Mississippi. MISO can roughly be divided into two regions: the pre-existing Midwest

region and the newly added South region. The Midwest region is originally-covered area

by MISO. The South region has been integrated since December 9, 2013. The South

region adds over 18,000 miles of transmission, 50,000 MW of generation capacity, and

up to 30,000 MW of load into the pre-existing MISO Midwest region. The map of the

MISO region is depicted in Fig. 4.3.

Figure 4.3: MISO regions: Midwest and South

As depicted in Fig. 4.4, the MISO Midwest region is divided into seven Local Resource

Zones (LRZs) : namely, Zone 1 ,..., Zone 7. Also, the South region is divided into two
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LRZs : namely, Zone 8 and Zone 9. The Midwest region is connected with the South

region. This study assumes that all neighboring zones are connected with one another

as depicted in Fig. 4.4. Also, the capacity import and export limits of each zone are

described in Table 4.1.

Figure 4.4: MISO local resource zone (LRZ)

Table 4.1: Year 2013 - 2014 capacity import and export limits by LRZ

Zone Import Limit(MW) Export Limit (MW)

1 4,085 1,416

2 4,144 1,766

3 3,717 1,612

4 6,614 2,230

5 5,035 1,616

6 6,838 3,432

7 4,576 4,306

8 5,933 3,464

9 3,554 2,716
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As depicted in Fig. 4.5, the MISO Midwest region is also divided into the three

transmission provider planning sub-regions: namely, the West, the Central and the East

sub-region.

Figure 4.5: Transmission provider planning sub-regions

MISO historical load data can be obtained as the sub-region levels. To adjust sub-

region level data with LRZ level data, this study divides the West sub-region into Zone 1,

Zone 2 and Zone 3, and the Central sub-region into Zone 4, Zone 5 and Zone 6. The East

sub-region is Zone 7 by itself. Finally, the South region is divided into Zone 8 and Zone

9. Table 4.2 depicts these classifications. Also, each sub-regional load is assumed to be

distributed to the corresponding zones weighted by transmission import limits described

in Table 4.1.
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Table 4.2: Planning sub-regions and LRZ classifications

Planning Sub-Region LRZs

West Zone 1, Zone 2, Zone 3

Central Zone 4, Zone 5, Zone 6

East Zone 7

South Zone 8, Zone 9

4.3.2 MISO Market Operations

MISO market participants include GenCos and LSEs. The GenCos can include

both conventional dispatchable generating units such as thermal power plant and non-

dispatchable renewable energy generating units such as wind and solar power plant.

Non-dispatchable renewable energy is treated as negative load.

Market operations are based on a double auction mechanism for the DAM. The

dispatchable GenCos submit supply offers into the DAM. Also, the LSEs submit demand

bids into the DAM in the form of a 24-hour regional load profile for day D. In the

DAM, MISO conducts Security-Constrained Unit Commitment (SCUC) and Security-

Constrained Economic Dispatch (SCED) optimizations based on given bids and offers

subject to system constraints. SCUC and SCED processes determine cost-minimized unit

commitments and scheduling of generation to meet forecasted next-day load implied by

LSE demand bids. In the RTM, the ISO conducts an offer-based SCED optimization

to balance discrepancies between the DAM-scheduled generation and the ISO forecasted

real-time load subject to system constraints. Locational Marginal Prices (LMPs) are

determined through these optimization processes by considering transmission and other

system constraints. Simplified MISO market operations are depicted in Fig. 4.6.
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Figure 4.6: Simplified MISO day-ahead and real-time market operations

4.3.3 Generator Attributes

Data provided by MISO [68] include nameplate capacity by fuel type. Fuel types

include nuclear, coal, natural gas, oil, hydro, pumped storage, biomass, and wind. This

study focuses only on the thermal generating units (nuclear, coal, natural gas, oil) and

the largest renewable energy, wind power. Figure 4.7 presents capacity proportion and

capacity by fuel type for MISO and each LRZ.

For simplicity, the 9-zone test system applies a scale-down factor without loss of

generality; all capacities and transmission line limits in this test system are re-scaled as

“Capacities/10” and “line limits/10”.3 In this test system, the fuel mix of the thermal

generation capacities is maintained in the same proportions as in the original MISO data

for each zone. The number of GenCo by fuel type at each zone in the test system is

determined by considering the scale-down total capacities and capacity proportions by

3While the generation capacity by fuel type and line limits are derived from MISO data, reactances
are arbitrarily decided in this test system.
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Figure 4.7: Capacity proportion and capacity by fuel type

fuel type at each zone. The number of GenCos by fuel type at each zone is provided in

Table 4.3.
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Table 4.3: Number of GenCos by fuel type at each zone

Nuclear Coal Gas Oil Total

MISO 8 19 67 8 102

Zone 1 1 3 7 1 12

Zone 2 1 2 2 1 6

Zone 3 1 3 3 1 8

Zone 4 1 2 5 1 9

Zone 5 0 2 6 1 9

Zone 6 1 3 9 1 14

Zone 7 1 2 5 1 9

Zone 8 1 1 2 0 4

Zone 9 1 1 28 1 31

All GenCos in the MISO 9-zone test system incur both the Unit Commitment (UC)

and dispatch costs. The UC costs include start-up, no-load, and shut-down costs. This

test system uses same additional generator attributes such as ramp rates, minimum

up/down times as described in Krishnamurthy et al. [51].4

No-load cost data for generators by fuel type in this test system are derived from the

IEEE 24-Substation Test Case data [9]. Table 4.4 provides these no-load costs by fuel

type and capacity.

4 Although ISO-NE 8-zone test system data in Krishnamurthy et al. [51] are based on the ISO
New England, it is natural to assume that each generator by fuel type has similar cost structures and
technologies across the U.S. energy regions.
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Table 4.4: No-load costs by fuel type and capacity

Fuel Capacity (MW) No-load cost ($/hr)

Coal 0 - 75 212.307

Coal 76 - 155 382.239

Coal 156 - 350 665.109

Coal > 350 877.417

Oil 0 - 12 086.385

Oil 13 - 20 400.684

Oil 21 - 100 781.521

Oil 101 - 200 832.757

Gas — 400.000

Nuclear — 385.374

Wind — 000.001

Photovoltaic — 000.001

The MISO 9-zone test system assumes that each thermal generator i offers based on

a quadratic dispatch cost function in each time period h as follows:

CR
i = aRi pi + bRi p

2
i (4.1)

where CR
i ($/h) is a reported dispatch cost of generator i, pi (MW) is the generator

i’s dispatch level measured in MW, aRi ($/MWh) and bRi ($/(MW)2h) are the reported

coefficients on a linear term and a quadratic term in the cost function respectively for

each generator i. These cost coefficients in (4.1) depend on the fuel types of generators.

The dispatch cost coefficients by fuel type are listed in Table 4.5.
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Table 4.5: Dispatch cost coefficients by fuel type

Fuel a ($/MWh) b ($/(MW)2h)

Coal 15 0.008

Fuel Oil 35 0.016

Jet Fuel 45 0.024

Kerosene 30 0.009

Landfill Gas 75 0.006

Municipal Solid Waste 15 0.004

Natural Gas 75 0.020

Nuclear 15 0.003

Tire Derived Fuel 75 0.020

All thermal generators incorporate ramp rate attributes in this test system. Ramp

rate (MW/min) is basically the speed at which a generator can increase (ramp up) or

decrease (ramp down) generation in one minute. Table 4.6 lists ramp rates by fuel type.

These ramp rates are displayed as % of capacity MW per minute.

Table 4.6: Ramp rate by fuel type

Fuel Ramp Rate

(% of capacity MW)/min

Coal 3 - 5

Oil 10 - 15

Natural Gas 20 - 25

Nuclear 1
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4.3.4 Load Serving Entity Attributes

In the MISO 9-zone test system, each zone has a single representative aggregated

Load Serving Entity (LSE). An LSE has an intermediary responsibility between GenCos

and retail customers in electric wholesale power markets. An LSE procures necessary

energy for retail customers by submitting demand bids into the DAM on each day D-

1. Based on the LSE regional next-day load forecasting for operating day D, the LSE

submits demand bid in the form of a 24-hour regional load profile for day D.

4.4 Performance Test of Test System

This study compares the simulation outcomes for the thermal and the wind generation

dispatch proportions from the MISO Midwest 7-zone test system and the actual thermal

and wind generation dispatch proportions from the MISO Midwest region during July,

2013 [67], for the performance check of the test system.

To get the simulation outcomes, this study uses 30-day load and wind generation

profile drawn from empirical probability density functions of load and wind generation.

Specifically, for each LRZ, hourly empirical probability density functions of load and

wind generation are estimated based on hourly weekday load and wind power generation

data during 2011 - 2013. From these empirical probability density functions, hourly load

and wind power generation profile data are constructed for 30 simulated days.5

Specific comparison between proportions of capacities and dispatches by fuel type

from the simulation outcomes under the 7-zone test system with proportions of capacities

and dispatches by fuel type from actual MISO data during July 2013 is depicted in

Table 5.3.

5 MATLAB ‘default seed’ is used to generate 30 simulated days’ load and wind power generation
profile from the estimated empirical probability density functions.
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Table 4.7: Comparision bewteen simulated dispatch proportions and actual MISO dis-

patch proportions by fuel type (%)

Capacity Simulated Dispatch Actual MISO Dispatch

Nuclear 6.65 10.08 11.28

Coal 50.70 75.65 74.97

Gas 30.30 8.65 9.03

Oil 2.70 2.23 0.00

Wind 9.66 3.39 4.72

Total 100.00 100.00 100.00

As we can see in this table, proportions of simulated dispatch by fuel type are similar

to proportions of actual MISO dispatch data during July 2013 given the same capacity

proportions. Thus the test system can well demonstrate actual MISO situation.

4.5 Illustrative Example

4.5.1 Purpose and General Scope

To illustrate the applicability of the MISO 9-zone test system, this study reports

day-ahead LMP changes for each pre-existing Midwest 7-zone through a comparative

study of the 7-zone Midwest test system prior to the integration of the South region

versus the 9-zone test system after the integration of the South region. For simplicity,

this illustrative example assumes: (i) generators consist of thermal generators and wind

power generators; (ii) There is no measurement error on day-ahead zonal load forecasting

and wind power generation; (iii) the MISO grid is not connected with other energy region,

i.e., there are no energy imports or exports; (iv) MISO requires reserve requirements at

8% of total capacity and, (v) all line reactances are set to 0.001.
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4.5.2 Day-Ahead Security Constrained Unit Committment

This test system used the same day-ahead SCUC described in Section IV-B of Kr-

ishnamurthy et al. [51]. The objective of this day-ahead SCUC is to minimize expected

total costs including UC costs and dispatch costs subject to system constraints based

on the next-day load forecasting. For more details, see the Krishnamurthy et al. [51]

Section IV-B.

4.5.3 Sensitivity Design

For sensitivity analysis, this study compares the average day-ahead LMPs during

specific time period T in Midwest zones between prior to and after the integration

of the South region. Expected hourly day-ahead LMPs are calculated through DAM

SCUC/SCED process in each zone both prior to and after the integration of the South

region. Given day-ahead LMPs for pre- and post-integration of the South region, %

change of average day-ahead LMPs during the time period T in Zone k are measured as

follows:

∆T
B,A,k =

AvgLMP T,A
k − AvgLMP T,B

k

AvgLMP T,B
k

× 100 (%) (4.2)

where ∆T
B,A,k is the average % change of day-ahead LMPs during the time period T

between prior to and after the integration of the South region at Zone k, AvgLMP T,A
k

is the average of day-ahead LMPs during the time period T after the integration of the

South region at Zone k, and AvgLMP T,B
k is the average of day-ahead LMPs during the

time period T prior to the integration of the South region at Zone k.

4.6 Key Findings from Illustrative Example

The integration of the South region is the key treatment factor in this illustrative

example. The 24-hour zonal day-ahead load data for simulation focus on 18th of July
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load profile: the day marked the peak hourly load during 2013 in the MISO Midwest

region.

This section reports the outcomes for the illustrative example described in Section 4.5.

The key finding is that the South region integration decreases simulated day-ahead LMPs

of all pre-existing Midwest zones given load and wind generation profile during July 17.

Specifically, as reported in Fig. 4.8, simulated day-ahead LMP is decreased 3.49% at

Zone 1, 3.80% at Zone 2, 3.20% at Zone 3, 3.33% at Zone 4, 2.22% at Zone 5, 4.24% at

Zone 6, 2.22% at Zone 7, and 3.20% at the Midwest region on average.

Figure 4.8: Simulated average % changes in the Midwest LMPs between pre- and post-
integration of the South region using 2013 MISO peak load data

To check the performance of the MISO 9-zone test system, this study provides ac-

tual average day-ahead LMP changes for the MISO Midwest region at each pricing hub6

prior to/after the South region integration by comparing average day-ahead LMP be-

tween the peak months, July 2013 and July 2014.7 Specifically, as depicted in Fig. 4.9,

6 MISO day-ahead LMP data are not published by local resource zone level but published by pricing
hub level. Thus, this section provides average day-ahead LMP changes at each pricing hub level.

7 Peak load profile in 2013 and 2014 is different, so it is hard to directly compare the peak day LMPs
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day-ahead LMP is decreased 1.17% at Illinois hub, 4.42% at Michigan hub, 13.57% at

Minnesota hub, 3.68% at Indiana hub and 5.68% at Midwest region on average. Thus,

this study demonstrates that LMPs are decreased after the South region integration in

both simulation outcomes and actual MISO data during the peak load time.

Figure 4.9: Actual % changes in the Midwest LMPs between July 2013 (pre-integration
of the South region) and July 2014 (post-integration of the South region)

4.7 Conclusion

Constructing of electricity wholesale power market test systems is important to ana-

lyze the effect of power market policies and environment changes on power markets. The

test systems can also help to forecast changes of system variables and market partici-

pant’s performances. This study constructs a 9-zone test system using 2013 MISO data.

This test system is implemented through AMES test bed. AMES permits systematic

between two different time periods. Thus this study compares the average LMP during July 2013 with
the average LMP during July 2013 to analyze the effects of the South region integration on the MISO
Midwest region LMPs during July.
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study of dynamic electric wholesale power markets allowing FERC’s centrally managed

two-settlement market design.

The limitations of data acquisition hinder to construct a sufficiently large test system

to fully reflect actual MISO situations. However, this small test system can be extended

to a sufficiently large test system, if we have the corresponding data set. Although

the small test system cannot embed all characteristics of MISO, it embeds important

features of actual MISO attributes such as generating capacity and technology by fuel

type, transmission constraints and operation processes. Thus, this small test system can

be applicable to finding implications for actual power markets by conducting various

sensitivity studies.

For the performance check of the test system, this study compares the simulation

outcomes for thermal and wind generation dispatch proportions from the MISO Mid-

west 7-zone test system with actual thermal and wind generation dispatch proportions

from the actual MISO Midwest region. Proportions of dispatches from the simulation

outcomes are is similar to proportions of actual MISO dispatches. Thus, the test system

can well demonstrate the actual MISO situations.

For sensitivity studies, this study compares the simulation outcomes for day-ahead

LMP changes with the actual MISO day-ahead LMP changes prior to/after the integra-

tion of the South region that has been incorporated into the pre-existing MISO Midwest

region since 9th of December in 2013.

The simulation outcomes report that the average day-ahead LMP decreases during

after the integration of the South region at each zone. Actual MISO LMP data also

report that overall LMPs at Midwest pricing hubs are decreased after the integration

of the South region. Thus, the simulation outcomes demonstrates similar trend in day-

ahead LMPs to the actual MISO day-ahead LMP after the integration of the South

region.
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CHAPTER 5. EFFECTS OF A CARBON TAX AND WIND

POWER PENETRATION ON WHOLESALE ELECTRIC

POWER MARKETS

5.1 Introduction

There is evidence that human activities produce large quantities of greenhouse gases.

Greenhouse gases can affect human activities through changes in the global climate. The

magnitude of such changes remains uncertain. However, there is growing recognition that

theses changes could be catastrophic [83]. Several governments all around world agreed

that greenhouse gases, especially CO2, cause climate change and accepted CO2 reduction

targets in order to counter climate change under the Kyoto Protocol [87]. Global climate

change is also one of the most significant long-term policy challenges [17].

Although the U.S. is the second largest CO2 emitter and historically the largest

cumulative contributor to global CO2 emissions, accounting for approximately 16 percent

of the world’s emissions, the U.S. did not ratify the acceptance of the Kyoto Protocol [88].

However, the U.S. President Obama committed to reduce emissions in the range of

17 percent below 2005 levels by 2020, 42 percent below 2005 levels by 2030, and 83

percent below 2005 levels by 2050 during 2009 Copenhagen Climate Change Summit.

These targets are aligned with the energy and climate legislation passed by the House

of Representatives [89]. Thus the U.S. Federal Government is considering several policy

options to reduce CO2 emissions.
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Under these circumstances, it is important to analyze the effects of possible CO2

emission reduction options in the U.S. Experimenting the effects of carbon tax policy is

usually analyzed at the economy-wide level. Two promising methods are input-output

(I-O) models and computable general equilibrium (CGE) models. I-O models derive

the inter-industry price effects of carbon taxes or emission charges. Several I-O models

show that the energy sector including the electricity sector is highly affected by carbon

tax policies [16, 12, 61, 45]. A CGE model is a general equilibrium model including

the industry, factor market and consumption sector. Several CGE models also show

consistent results with I-O models about the effects of carbon tax imposition on the

electricity sector [49, 41, 11].

Agent-Based Model (ABM) is one of the most promising methods to construct the

field of energy system modeling [59]. The application of ABM in the energy market re-

form and energy policy simulation is mainly focused on electricity markets. In previous

studies, analysis of carbon policy impacts in electricity markets through ABM mainly

focuses on a cap-and-trade system rather than a carbon tax. Weidlich et al. [92] provides

a conceptual simulation platform which can be used to test the impacts of different CO2

emission market designs, policy measures on market outcomes and the development of

the electricity sector through the multi-agent-based approach. Chappin and Dijkema [19]

develops ABM to elucidate the effect of a cap-and-trade on the decisions of power gen-

erators under an oligopolistic market setting in the Netherlands electricity market. This

study shows that a cap-and-trade has an impact but the effect of it is relatively small and

materialized late. Even after the introduction of a cap-and-trade, the coal generation is

preferred in the capacity expansion plan and the economic effect of a cap-and-trade is

not sufficient to outweigh the economic incentives to choose for coal generation. Wang et

al. [91] shows that the initial allowance will influence the operation of power producers

and that some generation companies may need to raise the bid prices to recover their

expenses for buying additional allowances. Cong and Wei [20] establishes ABM with cap-
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and-trade in China power sector. This study finds that cap-and-trade internalizes the

environmental cost and increases the average electricity price by 12% and its volatility

by 4%.

Recently, ABM models analyzing the effects of the renewable energy and carbon tax

policy on electric power markets have been developed. Sensfuß et al. [81] analyzes the

impact of the renewable electric generation on CO2 emissions and power plant utiliza-

tion portfolio in Germany based on ABM. This study shows that most of the renewable

resources replace coal power plants. Wild et al. [93] investigates the impact of the intro-

duction of a carbon price signal on wholesale electricity prices, carbon-pass-through rates

and retail electricity rates in the states making up the Australian National Electricity

Market based on AMES test bed [4]. This study shows that a carbon tax increases both

wholesale spot market prices and retail tariffs but the increasing amounts are different

across states.

Distinct from previous studies, this study focuses on the joint effects of carbon tax and

renewable energy options on the U.S. electric wholesale power market based on the data

of the largest centrally-managed energy region in the U.S., the Midcontinent Independent

System Operator (MISO). For analysis, a test bed has been developed based on empirical

data from MISO such as rules of operation, physical attributes of market generation

technology and capacity, and transmission constraints. Also, effects on CO2 emissions

of alternative carbon tax levels based on a proposal in the U.S. Congressional Budget

Office Report [17] and wind power penetration levels based on 2025 MISO projection

[43] have been studied.

This study is implemented through ABM platform. ABM is one of the most promising

methods to construct the field of energy system modeling and to analyze the effects

of exogenous shocks on energy markets [59]. The application of ABM in the energy

market reform and energy policy simulation is mainly focused on electricity markets.

Specifically, ABM can investigate the effects of extensive scenarios of CO2 reduction
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options on CO2 emissions and other electric wholesale power market key outcomes at

the market participant-level.

This study is organized as follows. Section 5.2 explains the method of this study

such as MISO 7-zone model construction, implementation of ABM, experimental design,

scenarios and types of reported simulation outcomes. Scenario-based simulated effects

of CO2 reduction options on CO2 emissions and other electricity market key outcomes

are provided in Section 5.3. Finally, concluding remarks are presented in Section 5.4.

5.2 Method

5.2.1 MISO Midwest 7-Zone Test System

This study constructs the MISO Midwest 7-zone test system based on Chapter 4

for sensitivity analysis. Physical attributes of MISO such as zonal capacity by fuel

type and transmission line constraints are incorporated in the test system. Also, this

test system embeds rules of MISO market operations, cost structures and technology

information of generating units by each fuel type and attributes of LSEs. This test system

is implemented through AMES test bed [4]. More detailed descriptions are presented in

Chapter 4.

This study focus on the CO2 emission reduction options such as carbon tax and

wind power penetration. Thus characteristics of carbon intensity by fuel type and cost

structures of wind power generation are added to the MISO Midwest 7-zone test system.

Unlike thermal power generation, wind power generation has some unique character-

istics. First, wind power is volatile and uncontrollable. Thus this study considers wind

power as non-dispatchable energy. Second, wind power has high fixed cost but very low

dispatch cost. Thus this study assumes that wind power has zero dispatch cost. This

implies that wind power is dispatched in most cases if the total load is greater than the

total wind power generation and the power system has enough available transmission ca-
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pacity. By combining these two characteristics of wind power, we can treat wind power

as negative load.

This study uses levelized cost of wind power estimated by EIA, $80.6/MWh to calcu-

late the total cost of wind power generation.1 Levelized cost represents the per-MWh cost

(in real dollars) of building and operating a generating plant over an assumed financial

life and duty cycle.

All generators in this test bed emit CO2 when they generate electricity except nuclear

and wind power generators.

Each fuel type of generator has different carbon intensity. Each carbon intensity per

MWh of electricity generation by fuel type measured in CO2 tonnage (tCO2) per MWh is

reported in Table 5.1. The amount of CO2 emission from a specific fuel type generation

is calculated by multiplying the amount of generation by carbon intensity per MWh of

a specific fuel type.

Table 5.1: Average carbon intensity per MWh of electricity generation by fuel type

Fuel Type tCO2/MWh

Nuclear 0.0000

Coal 0.9716

Gas 0.5539

Oil 0.7922

Although the identical carbon tax ($/tCO2) is imposed on each fuel type, the carbon

tax per MWh is different across fuel type because each fuel type has different carbon

intensity.

1 http://www.eia.gov/forecasts/aeo/electricity_generation.cfm

http://www.eia.gov/forecasts/aeo/electricity_generation.cfm
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5.2.2 Experimental Design

5.2.2.1 Purpose and General Scope

To analyze the effects of CO2 reduction options, an increased renewable energy and a

carbon tax imposition, on CO2 emissions and electricity market performance, this study

uses the test bed to conduct a comparative study of base case, electricity market without

a increased renewable energy and a carbon tax imposition, versus CO2 reduction scenario

based cases, electricity market with the renewable energy penetration or the carbon tax

imposition with MISO load and wind power data.

5.2.2.2 Simulated CO2 Reduction Scenarios

This study focuses on two CO2 emission reduction options as treatment factors: a

renewable energy penetration and a carbon tax imposition.

First, the renewable energy policy is represented by two different wind power pene-

tration rates: MISO’s 2013 wind power penetration rate, 9.66% (low level), and MISO’s

projected 2025 wind power penetration rate, 17.70% (high level), of 2013 MISO’s total

capacity [43]. Wind power is embedded as negative load for each zone in this study.

Second, two different level of upstream carbon taxes are imposed on each GenCo

and are embedded in each GenCo’s dispatch cost based on the carbon intensity by fuel

type. The carbon tax levels are based on the 2013 EU ETS average carbon spot price

and proposed bills for carbon tax imposition in the U.S.The historical EU ETS average

carbon spot price is around e5/tCO2 and the historical euro-to-dollar exchange rate is

around 1.3 during 2013. 2 Based on this, $6.5/tCO2 (low level) carbon tax rate is set

to be equivalent to the 2013 EU ETS average carbon spot price. Also, $20/tCO2 (high

level) carbon tax rate is set based on proposed bills for carbon tax imposition in the U.S.

2 https://www.eex.com/

https://www.eex.com/
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This study sets up CO2 emission reduction scenarios for sensitivity studies by com-

bining two different levels of these two treatment factors. A hypothetical base case (BC),

an electricity market without a wind power penetration and a carbon tax imposition, is

established to analyze the effects of these two treatment factors on the electricity market

performance.

Under scenario 1 (SC1), the test bed embeds MISO’s 2013 wind power penetration

rate, 9.66%. Thus SC1 is similar to the current MISO market situation. Under scenario

2 (SC2), the test bed embeds a wind power penetration rate based on MISO’s projected

2025 wind power penetration rate, 17.70%.

Under scenario 3 (SC3), the test bed embeds $6.5/tCO2 (upstream) carbon tax im-

position. Under scenario 4 (SC4), the test bed embeds $20/tCO2 carbon tax imposition.

Scenario 5-8 (SC5-SC8) mix these two treatment factors: SC5 embeds 9.66% wind

power penetration rate and $6.5/tCO2 carbon tax imposition, SC6 embeds 17.7% wind

power penetration rate and $6.5/tCO2 carbon tax imposition, SC7 embeds 9.66% wind

power penetration rate and $20/tCO2 carbon tax imposition, and SC8 embeds 17.7%

wind power penetration rate and $6.5/tCO2 carbon tax imposition. Details about base

case and all other scenario characteristics are described in Fig. 5.1.

Figure 5.1: Simulated scenarios for sensitivity study
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5.2.2.3 Data

We can only obtain exogenous hourly planning sub-region level load and hourly MISO

total wind power generation from the MISO website [68]. The test bed is established by

zone level. Thus we need to assign planning sub-region level load and MISO total wind

power generation to each zone.

To obtain zonal load, each sub-regional load is assumed to be distributed to the

corresponding zones weighted by transmission import limits described in Chapter 4.

To obtain zonal wind power generation, total wind power generation is assumed to

be distributed to the corresponding zones weighted by wind power capacity proportion

of each zone. Also, this study assumes that the increase in wind power penetration rate

increases total wind power generation at a rate proportional to the increase of wind

penetration rate. For example, suppose that wind power generation is 100MWh for a

specific hour H under 9.66% of wind power penetration rate, then wind power generation

for a specific hour H under 17.70% of wind power penetration rate would be 183MWh

calculated by multiplying 100MWh by 1.83 (= 17.70/9.66).

Relatively high contingent situations on the power market can arise during the peak

season because of the scarcity of resources. Price volatility is also high and all other key

outcomes in the power market are more sensitive during the peak season. This implies

that we may observe the significant impact of possible policies on electric power markets

during the peak season. Thus this study focuses on the peak load month, July, and uses

average hourly load and wind power generation data during this month.

For sensitivity studies, hourly empirical distributions of load and wind power gen-

eration are estimated based on hourly weekday load and wind power generation data

during 2011 - 2013 in zonal level. From these empirical distributions, hourly load and

wind power generation profile data under 9.66% of wind power penetration rate are

constructed for 30 simulated days. MATLAB R2014b ‘default seed’ is used to generate

30 simulated days load and wind power generation profile from the estimated empirical
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distributions. We can obtain 30-day wind power generation profile data under 17.7% of

wind power penetration rate by multiplying 1.83 (= 17.70/9.66) by constructed 30-day

wind power generation profile under 9.66% wind power penetration rate.

Load and wind power generation are also scaled down with the same scale-down factor

applied to generating capacity and transmission line limits as described in Chapter 4.

Also, the increase of dispatch cost ($/MWh) data by fuel type incurred by carbon tax

imposition can be calculated as follows: multiplying carbon intensity per MWh presented

in Table 5.1 by imposed carbon tax level. The increase of dispatch cost under $6.5/tCO2

and $30/tCO2 carbon tax imposition by fuel type is provided in Table 5.2

Table 5.2: Additional dispatch cost from carbon tax imposition by fuel type ($/MWh)

$6.5/tCO2 $20/tCO2

Nuclear 0.0000 0.0000

Coal 6.3154 19.4320

Gas 3.6004 11.0780

Oil 5.1493 15.8440

5.2.2.4 Sensitivity Design

The main purpose of this study is to investigate the effects of CO2 reduction options

on CO2 emissions and other market performances. The effects are measured relative to

base case, electricity market without CO2 reduction options. The key treatment factors

for CO2 reductions in electricity market are embedded in each scenario as described in

Section 5.2.2.2.

For each comparative study of CO2 emissions and other market performances be-

tween base case and scenario sj, sj = 1, 2, ...8, expected difference (%) in outcomes are

calculated as follows.
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First, draw dayD load profile, L(D), and dayD wind power generation profile, W(D),

during 30 simulated days, D = 1, 2, ..., 30, from empirical distributions and adjust wind

power generation profile corresponding to scenario sj as described in Section 5.2.2.3

Second, adjust each GenCo’s dispatch cost based on the carbon tax level and carbon

intensity by fuel type corresponding to scenario sj as described in Section 5.2.2.3.

Third, calculate specific outcome V under base case and scenario sj determined by

means of SCUC and SCED given load and wind power profile of day D, i.e., L(D) and

W(D). SCUC and SCED solutions are provided by hourly basis, H = 1, 2, ..24, during

day D. To get outcome V during day D, VD, we need to add all hourly outcomes, VH ,

during day D as follows.

VD =
24∑
H=1

VH (5.1)

Fourth, letting VD(bc) and VD(sj) denotes a outcome V during day D under base

case and scenario sj respectively, calculate difference (%) in daily outcome V between

base case and scenario sj, ∆V,D(sj), as follows for each day D.

∆V,D(sj) =
VD(bc)− VD(sj)

VD(bc)
× 100% (5.2)

Fifth, calculate the average and the standard deviation of daily difference in outcome

V between base case and scenario sj for 30 simulated days, D = 1, 2, ..., 30 as follows:

∆avg
V (sj) =

∑30
D=1 ∆V,D(sj)

30
(5.3)

∆std
V (sj) =

√∑30
D=1(∆V,D(sj)−∆avg

V (sj))2

29
(5.4)

Sixth, repeat this process for all or selected outcomes and scenarios based on the

objective of research.

Throughout all scenarios, it is assumed that market participants have no learning

capabilities and LSE demands are not price responsive.
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5.2.2.5 Types of Reported Simulation Outcomes

This study reports the average and the standard deviation of difference of outcomes

between base case and each scenario to measure the effects of CO2 reduction policies on

CO2 emissions, net load3 and its volatility, average LMP and its volatility, dispatch and

profits of thermal generators as described in Section 5.2.2.4

Unlike the previous outcomes, wind power generation profit and government carbon

tax revenue are reported as the average and the standard deviation of their simulated

values instead of the difference of outcomes between base case and scenarios, because

these outcomes are newly incorporated in the model due to two treatment factors, so these

values on each scenario can not be measured relative to base case. The calculation process

of average and standard deviation of wind power generation profit and government tax

revenue are same with equation (5.3) and (5.4) respectively.

In addition to these outcomes, all simulated outcomes (total CO2 emissions and CO2

emissions by fuel type, net load and its volatility, average LMP and its volatility, total

dispatch and dispatch by fuel type, total generation revenue and generation revenue by

fuel type, total cost and cost by fuel type, total profit and profit by fuel type, total

carbon tax revenue and carbon tax revenue by fuel type) are reported in Table C.1 of

Appendix C.

Note that all figures and tables in following sections report average values together

with standard deviations (in parenthesis).

5.2.2.6 Test Bed Vs. Real-World MISO Outcomes

As mentioned in Section 5.2.2.2, SC1 in our test bed is similar to the current MISO

market situation. Thus this study compares simulated results of thermal and wind

3Net load = load - wind power generation
4 Net load volatility and LMP volatility are measured as Coefficient of Variation (CV) which is

defined as the ratio of the standard deviation to the mean, StandardDeviation
Average , to get normalized variable

volatility.
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generation dispatch to the actual thermal and wind generation dispatch levels of MISO

during July 2013 for a validation check of the test bed.

Note that this test bed has the same capacity proportion by fuel type with actual 2013

MISO capacity proportion. The dispatch proportion in SC1 is calculated from simulated

results for dispatch by fuel type provided at Table C.1 in Appendix C and actual MISO

dispatch proportion by fuel type during July 2013 is obtained from July 2013 Monthly

Market Assessment Report [67].

In simulation results for SC1, the proportion of dispatch level by fuel type show dif-

ferent pattern from the proportion of capacities by fuel type. Although the capacity

of gas generation is over one third of total capacity, gas generation is only dispatched

8.65% in total dispatch even given the peak month load data because it has the highest

dispatch cost as depicted in Chapter 4. This is equivalent to the actual MISO situation.

Gas generation is usually peaker and most gas capacity is maintained for reserves. Oil

generation is only dispatched 2.23% because it has the smallest capacity proportion and

the second highest dispatch cost. Nuclear power dispatch is 10.08% in total generation

which is more than its capacity proportion (7.36%) because nuclear generation has the

lowest dispatch cost. Coal generation is dominantly dispatched. Coal generation dis-

patch proportion (75.65%) is more than its capacity proportion (56.12%) because it has

the largest capacity proportion and the second lowest dispatch cost. Specific comparison

between the capacity and the dispatch proportion by fuel type in SC1 with the capacity

and the dispatch proportion by fuel type in MISO during July 2013 is depicted in Ta-

ble 5.3. As we can see in this table, simulated dispatch results by fuel type are similar

to actual MISO dispatch level by fuel type during July 2013 given the same capacity

proportions. Thus the test bed can represent the real-world MISO situation well.
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Table 5.3: Comparision bewteen simulated dispatch proportions under SC1 and actual

MISO dispatch proportions by fuel type (%)

Capacity Simulated Dispatch for SC1 Actual MISO Dispatch

Nuclear 6.65 10.08 11.28

Coal 50.70 75.65 74.97

Gas 30.30 8.65 9.03

Oil 2.70 2.23 0.00

Wind 9.66 3.39 4.72

Total 100.00 100.00 100.00

5.3 Results

5.3.1 Effects on Total CO2 Emissions

The wind power penetration and the carbon tax imposition can reduce total CO2

emissions. The wind power generation can reduces CO2 emissions by directly substituting

for the dispatch of fossil-fuel generation, such as coal, gas and oil generation. The carbon

tax imposition can also reduces CO2 emissions by changing fuel mix from high carbon

intensive fuel type generation to low carbon intensive fuel type generation implied by

relative dispatch cost changes.

In the simulation results, total CO2 emissions are decreased by 3.03% under low level

wind power penetration rate (SC1) and 5.61% under high level wind power penetration

rate (SC2) relative to base case. Thus the increase in wind power penetration rate

decreases total CO2 emissions.

Total CO2 emissions are decreased by 0.23% under both low level carbon tax impo-

sition (SC3) and high level carbon tax imposition (SC4) relative to base case. These
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results imply that a much higher carbon tax rate than $20/tCO2 needs to be imposed

to derive major fuel mix changes and to reduce additional CO2 emissions in electricity

markets during the peak season.

Total CO2 emissions are also decreased in mixed options (SC5-SC8) relative to base

case. The amount of total CO2 emission reduction in mixed options is slightly higher

than the sum of reduction from each separate option. Thus joint effects of these two

options show weakly positive correlation in total CO2 emission reduction. More detailed

results about CO2 emission reduction are described in Fig. 5.2.5

Figure 5.2: Effects of CO2 reduction options on total CO2 emissions

5.3.2 Effects on CO2 Emissions by Fuel Type

The effects of wind power penetration and carbon tax imposition on CO2 emissions

can differ by fuel type. The wind power generation can reduces CO2 emissions by directly

substituting for the dispatch of fossil-fuel generation, such as coal, gas and oil generation,

but it can not affect CO2 emissions from nuclear generation because nuclear generation

dose not emit CO2.

The carbon tax imposition can also reduces CO2 emissions from high carbon intensive

fuel type generation, such as coal and oil generation, but it can increase CO2 emissions

5 All figures and tables in this section report average outcomes together with standard deviations (in
parenthesis).
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from low carbon intensive fuel type generation, such as gas generation. High carbon

intensive fuel type generation can be substituted by low carbon intensive fuel type gen-

eration under the carbon tax imposition by changing the relative dispatch cost between

different fuel type generation; the increase in dispatch cost of high carbon intensive fuel

type generation is relatively higher than the increase in dispatch cost of low carbon in-

tensive fuel type generation. The carbon tax imposition can not affect CO2 emissions

from nuclear generation because nuclear generation dose not emit CO2 at all.

In the simulation results, CO2 emissions from nuclear generation do not change rel-

ative to base case through all scenarios because nuclear generation does not emit CO2.

Detailed results of CO2 emissions from nuclear generation are displayed in Fig. 5.3 (a).

CO2 emissions from coal generation are decreased by 1.33% under low level wind

power penetration rate (SC1) and 2.93% under high level wind power penetration rate

(SC2) relative to base case. Thus the increase in wind power penetration rate decreases

CO2 emissions from coal generation. CO2 emissions from coal generation are decreased

by 0.26% under both low level carbon tax imposition (SC3) and high level carbon tax

imposition (SC4) relative to base case. Thus there are no level effects on CO2 reduction

from coal generation between low and high level carbon tax imposition. CO2 emissions

from coal generation are also decreased in mixed options (SC5-SC8) relative to base case.

The amount of total CO2 emission reduction in mixed options is higher than the sum

of reduction from each separate option. Thus joint effects of these two options show

positive correlation in CO2 emission reduction from coal generation. Detailed results of

CO2 emissions from coal generation are displayed in Fig. 5.3 (b).

CO2 emissions from gas generation are decreased by 20.43% under low level wind

power penetration rate (SC1) and 31.73% under high level wind power penetration rate

(SC2) relative to base case. Thus the increase in wind power penetration rate decreases

CO2 emissions from gas generation. CO2 emissions from gas generation are increased by

0.02% under low level carbon tax imposition (SC3) and 0.07% under high level carbon
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tax imposition (SC4) relative to base case. Thus the increase in carbon tax rate increases

CO2 emissions from gas generation by substituting for other fossil-fuel generation. CO2

emissions from gas generation are also decreased in mixed options (SC5-SC8) relative to

base case. The amount of total CO2 emission reduction in mixed options is lower than the

sum of reduction from each separate option. Thus joint effects of these two options show

negative correlation in CO2 emission reduction from gas generation. Detailed results of

CO2 emissions from gas generation are displayed in Fig. 5.3 (c).

CO2 emissions from oil generation are decreased by 13.69% under low level wind

power penetration rate (SC1) and 26.51% under high level wind power penetration rate

(SC2) relative to base case. Thus the increase in wind power penetration rate decreases

CO2 emissions from oil generation. CO2 emissions from oil generation are decreased by

0.02% under low level carbon tax imposition (SC3) and 0.14% under high level carbon

tax imposition (SC4) relative to base case. Thus the increase in carbon tax rate decreases

CO2 emissions from oil generation. CO2 emissions from oil generation are also decreased

in mixed options (SC5-SC8) relative to base case. The amount of total CO2 emission

reduction in mixed options is lower than the sum of reduction from each separate op-

tion. Thus joint effects of these two options show negative correlation in CO2 emission

reduction from oil generation. Detailed results of CO2 emissions from oil generation are

displayed in Fig. 5.3 (d).

5.3.3 Effects on Net Load

As earlier assumptions, this study does not consider price-responsive demand. Thus

the carbon tax imposition can not affect net load and its volatility. Thus the wind power

penetration level is the only treatment factor that can affect net load and its volatility.

We can observe that wind power penetration decrease net load but increase net load

volatility in actual electricity markets [36].
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Figure 5.3: Effects of CO2 reduction options on CO2 emissions by fuel type

In the simulation results, net load is decreased by 3.39% under low level wind power

penetration rate and 6.38% under high level wind power penetration rate relative to base

case. Thus the increase in wind penetration rate decreases net load. Detailed results of

net load are displayed in Fig. 5.4 (a).

Net load volatility is increased by 5.20% under low level wind penetration rate and

10.39% under high level wind penetration rate relative to base case in terms of CV. Thus

the increase in wind penetration rate increases net load volatility. Detailed results of net

load are displayed in Fig. 5.4 (b).

5.3.4 Effects on Locational Marginal Prices (LMPs)

Net load can be decreased under the wind power penetration. Thus the wind power

penetration can decrease average LMP, because a decrease in net load implies a shift

down of demand.
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Figure 5.4: Effects of CO2 reduction options on net load and its volatility

The wind power penetration can increase LMP volatility in terms of CV. CV is defined

by “standard deviation/average”. Thus CV can be increased (decreased) if standard

deviation is increased (decreased) or average is decreased (increased).

As we can see from Fig. 5.4 (b), net load volatility can be increased under wind power

penetration relative to base case. The increase in net load volatility can increase LMP

volatility relative to base case because LMP is determined by load under given market

construction. Thus the increase in LMP volatility and the decrease in average LMP can

increase LMP volatility in terms of CV under wind power penetration.

LMP level is determined by the dispatch cost of marginal unit. The carbon tax impo-

sition can increase average LMP by increasing the dispatch cost of fossil-fuel generators.

The carbon tax imposition can decrease LMP volatility; carbon tax imposition can

bridge the dispatch cost gap between different fuel type generation. For example, the gas

generation has the highest dispatch cost while the coal generation has the second lowest

dispatch cost, but gas generation emits CO2 around half less than coal generation in

generating the same amount of electricity. Thus coal generation pays almost twice more

carbon tax than gas generation and the dispatch cost gap between coal and gas generation

can be decreased. This implies that the decrease in dispatch cost gap between different

fuel type generation can decrease LMP volatility. The decrease in LMP volatility and

the increase in average LMP can decrease LMP volatility in terms of CV.
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When these two CO2 reduction options are simultaneously used, the average LMP

and its volatility would be determined by the relative magnitude of these two oppositely

directed effects.

In the simulation results, average LMP is decreased by 9.29% under low level wind

power penetration rate (SC1) and 16.87% under high level wind power penetration rate

(SC2) relative to base case. Thus the increase in wind power penetration rate decreases

average LMP. Average LMP is increased by 8.25% under low level carbon tax imposi-

tion (SC3) and 25.11% under high level carbon tax imposition (SC4) relative to base

case. Thus the increase in carbon tax rate increases average LMP. The average LMP is

decreased by 0.56% under low level wind power penetration rate and low level carbon

tax imposition (SC5) and 8.34% under high level wind power penetration rate and low

level carbon tax imposition (SC6) relative to base case. The average LMP is increased

by 17.65% under low level wind power penetration rate and high level carbon tax im-

position (SC7) and 10.44% under high level wind power penetration rate and high level

carbon tax imposition (SC8) relative to base case. Detailed results of average LMP are

displayed in Fig. 5.5 (a).

Volatility of LMP is increased by 14.61% under low level wind power penetration rate

(SC1) and 24.65% under high level wind power penetration rate (SC2) relative to base

case. Thus the increase in wind penetration rate increases volatility of LMP. Volatility

of LMP is decreased by 12.68% under low level carbon tax imposition (SC3) and 33.62%

under high level carbon tax imposition (SC4) relative to base case. Thus the increase

in carbon tax rate decreases volatility of LMP. Volatility of LMP is decreased by 0.95%

under low level wind power penetration rate and low level carbon tax imposition (SC5)

while it is increased by 7.39% under high level wind power penetration rate and low level

carbon tax imposition (SC6) relative to base case. Volatility of LMP is decreased by

25.55% under low level wind power penetration rate and high level carbon tax imposition

(SC7) and 20.17% under high level wind power penetration rate and high level carbon
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tax imposition (SC8) relative to base case. Detailed results of volatility of LMP are

displayed in Fig. 5.5 (b).

Figure 5.5: Effects of CO2 reduction options on average LMP and its volatility

5.3.5 Effects on Thermal Generator Dispatch and Profit Levels

5.3.5.1 Effects on Dispatch Levels by Fuel Type

The effects of wind power penetration and carbon tax imposition on the dispatch can

differ by fuel type. The wind power generation can decrease the dispatch by directly

substituting for the dispatch of thermal generation such as nuclear, coal, gas and oil

generation. But the degree of substitution can differ by fuel type; thermal generation

with relatively high dispatch cost, such as gas and oil generation can be substituted by

wind power generation more than thermal generation with relatively low dispatch cost,

such as nuclear and coal generation. Even thermal generation with low dispatch cost

can increase for balancing if the wind power generation substitutes generation with high

dispatch cost much more than generation with low dispatch cost.

The carbon tax imposition can decrease relatively high carbon intensive fuel type

generation dispatch such as coal and oil but increase relatively low carbon intensive

fuel type generation dispatch such as nuclear and gas generation. This implies that high

carbon intensive fuel type generation can be substituted by low carbon intensive fuel type
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generation under the carbon tax imposition by changing relative dispatch cost between

different fuel type generation; the increase in dispatch cost of high carbon intensive fuel

type generation is relatively higher than the increase in dispatch cost of low carbon

intensive fuel type generation.

In the simulation results, the nuclear generation dispatch are increased by 2.01%

under low level wind power penetration rate (SC1) and 0.01% under high level wind power

penetration rate (SC2) relative to base case. The nuclear generation dispatch is increased

by 1.97% under both low level carbon tax imposition (SC3) and high level carbon tax

imposition (SC4) relative to base case by substituting for high carbon intensive fossil-

fuel generation, such as coal and oil generation. The nuclear generation dispatch are also

increased in mixed options (SC5-SC8) relative to base case. The amount of the increase

in nuclear generation dispatch in mixed options is higher than the sum of the increase

in nuclear generation dispatch from each separate option. Thus joint effects of these two

options show positive correlation in the increase in nuclear generation dispatch. Also, the

amount of the increase in nuclear generation dispatch is identical across mixed options.

Detailed results of the nuclear generation dispatch are displayed in Fig. 5.6 (a).

The coal generation dispatch is decreased by 1.33% under low level wind power pene-

tration rate (SC1) and 2.93% under high level wind power penetration rate (SC2) relative

to base case. Thus the increase in wind penetration rate decreases the coal generation

dispatch. The coal generation dispatch is decreased by 0.26% under both low level carbon

tax imposition (SC3) and high level carbon tax imposition (SC4) relative to base case.

The coal generation dispatch are also decreased in mixed options (SC5-SC8) relative to

base case. The amount of the decrease in coal generation dispatch in mixed options is

higher than the sum of the decrease in dispatch from each separate option. Thus joint

effects of these two options show positive correlation in the decrease in coal generation

dispatch. Detailed results of coal generation dispatch are displayed in Fig. 5.6 (b).
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The gas generation dispatch is decreased by 20.43% under low level wind power

penetration rate (SC1) and 31.73% under high level wind power penetration rate (SC2)

relative to base case. Thus the increase in wind penetration rate decreases the gas

generation dispatch. The gas generation dispatch are increased by 0.02% under low level

carbon tax imposition (SC3) and 0.07% under high level carbon tax imposition (SC4)

relative to base case. Thus the increase in carbon tax rate increases the gas generation

dispatch by substituting for high carbon intensive fossil-fuel generation, such as coal and

oil generation. The gas generation dispatch is also decreased in mixed options (SC5-SC8)

relative to base case. The amount of the decrease in gas generation dispatch in mixed

options is smaller than the sum of gas generation dispatch from each separate option.

Thus joint effects of these two options show negative correlation in the decrease in gas

generation dispatch. Detailed results of the gas generation dispatch are displayed in

Fig. 5.6 (c).

The oil generation dispatch is decreased by 13.69% under low level wind power pen-

etration rate (SC1) and 26.51% under high level wind power penetration rate (SC2)

relative to base case. Thus the increase in wind penetration rate decreases the oil gener-

ation dispatch. The oil generation dispatch is decreased by 0.02% under low level carbon

tax imposition (SC3) and 0.14% under high level carbon tax imposition (SC4) relative

to base case. Thus the increase in carbon tax rate decreases the oil generation dispatch.

The oil generation dispatch is also decreased in mixed options (SC5-SC8) relative to base

case. The amount of the decrease in oil generation dispatch in mixed options is smaller

than the sum of the decrease in dispatch from each separate option. Thus joint effects

of these two options show negative correlation in the decrease in oil generation dispatch.

Detailed results of oil generation dispatch are displayed in Fig. 5.6 (d).
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Figure 5.6: Effects of CO2 reduction options on dispatch by fuel type

5.3.5.2 Effects on Total Profit

Generally, the wind power penetration can decrease the total profit of thermal gen-

erator in two ways; it can decrease electricity price (average LMP) and the chance of

thermal generation dispatch by directly substituting for it.

The carbon tax imposition can affects the profit of thermal generator in two ways;

it can increase both electricity price and dispatch cost. The increase in electricity price

and dispatch cost affects the profit of thermal generator in opposite way. Thus effects

of the carbon tax imposition on the profit of thermal generator depend on the relative

magnitude of these two opposite effects.

The effects of wind power penetration and carbon tax imposition on the profit of

generator can differ by fuel type. More details about this issue are described in Sec-

tion 5.3.5.3.



www.manaraa.com

135

In the simulation results, the total profit of thermal generator is decreased by 12.10%

under low level wind power penetration rate (SC1) and 22.05% under high level wind

power penetration rate (SC2) relative to base case. Thus the increase in wind power

penetration rate decreases the total profit of thermal generator.

The total profit of thermal generator is decreased by 2.43% under low level carbon

tax imposition (SC3) and 7.79% under high level carbon tax imposition (SC4) relative

to base case. Thus the increase in carbon tax imposition rate decreases total profit of

thermal generator.

The total profit of thermal generator is also decreased in mixed options (SC5-SC8)

relative to base case. The amount of the decrease in the total profit of thermal generator

in mixed options is smaller than the sum of the decrease of profit from each separate

option. Thus joint effects of these two options show negative correlation in the decrease in

total profit of thermal generator. More detailed results about the total profit of thermal

generator are described in Fig. 5.7.

Figure 5.7: Effects of CO2 reduction options on total thermal generator profit

5.3.5.3 Effects on Profits by Fuel Type

The effects of wind power penetration and carbon tax imposition on the profit of

thermal generator can differ by fuel type. The wind power penetration can decrease

electricity price and chance of thermal generator dispatch except nuclear power as men-
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tioned in previous section. The decrease in electricity price and dispatch can decreases

general profit of thermal generator. Also, the wind power penetration can increase net

load volatility. This can give more chances for fast ramping unit, such as gas generator

to be committed and dispatched for balance and reserve because frequency of the event

for requiring fast raming unit increases as net load volatility increases. During the event

for requiring fast raming unit, electricity price can be much higher than price in normal

situation. Thus profit of fast ramping generator can be increased. Thus the profit of

thermal generator by fuel type is determined relative to the magnitudes of these opposite

effects under the wind power penetration.

The carbon tax imposition can increase both the electricity price and dispatch cost of

thermal generator. Every thermal generator faces the same increase in electricity price

but different increase in dispatch cost. High carbon intensive fuel type generator, such

as coal and oil generator faces higher increase in dispatch cost than low carbon intensive

fuel type generator, such as nuclear and gas generator. If the increase in electricity price

is relatively higher than the increase in dispatch cost for low carbon intensive fuel type

generator, then profit of low carbon intensive fuel type generator can be increased. Thus

the profit of thermal generator by fuel type is determined relative to the magnitudes of

these opposite effects under the carbon tax imposition.

In the simulation results, the profit of nuclear generator is decreased by 10.71%

under low level wind power penetration rate (SC1) and 22.82% under high level wind

power penetration rate (SC2) relative to base case. Thus the increase in wind power

penetration rate decreases profit of nuclear generator. Profit of nuclear generator is

increased by 12.29% under low level carbon tax imposition (SC3) and 36.90% under

high level carbon tax imposition (SC4) relative to base case because nuclear power does

not emit CO2. The profit of nuclear generator is increased by 2.62% under low level

wind power penetration rate and low level carbon tax imposition (SC5), 29.88% under

low level wind power penetration rate and high level carbon tax imposition (SC7), and
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18.25% under high level wind power penetration rate and high level relative to base

case. However, profit of nuclear generator is decreased by 9.66% under high level wind

power penetration rate and low level carbon tax imposition (SC6) relative to base case.

Detailed results of nuclear generator profit are displayed in Fig. 5.8 (a).

Profit of coal generator is decreased by 12.08% under low level wind power penetration

rate (SC1) and 21.90% under high level wind power penetration rate (SC2) relative to

base case. Thus the increase in wind power penetration rate decreases profit of coal

generator. Profit of coal generator is decreased by 4.31% under low level carbon tax

imposition (SC3) and 13.46% under high level carbon tax imposition (SC4) relative to

base case. Thus the increase in carbon tax rate decreases profit of nuclear generator.

Profit of coal generator is also decreased in mixed options (SC5-SC8) relative to base

case. The amount of the decrease in profit of coal generator in mixed options is smaller

than the sum of the decrease in profit from each separate option. Thus joint effects of

these two options show negative correlation in the decrease in profit of coal generator.

Detailed results of the profit of coal generator are displayed in Fig. 5.8 (b).

Profit of gas generator is decreased by 21.94% under low level wind power penetration

rate (SC1) but increased 31.93% under high level wind power penetration rate (SC2)

relative to base case. This implies that the frequency of event for requiring high ramping

unit increases as wind power penetration rate increases and the relative magnitude of

this effect on the increase in profit of gas generator is greater than the effect on the

decrease in profit by decreasing electricity price under high level wind power penetration

rate. Profit of gas generator is increased by 0.08% under low level carbon tax imposition

(SC3) and 0.60% under high level carbon tax imposition (SC4) relative to base case. Thus

the increase in carbon tax rate increases profit of gas generator because gas generation

is relatively low carbon intensive generation. Profit of gas generator is decreased by

20.12% under low level wind power penetration rate and low level carbon tax imposition

(SC5) and 19.73% under low level wind power penetration rate and high level carbon tax
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imposition (SC7) relative to base case. However, profit of gas generator is increased by

29.14% under high level wind power penetration rate and low level carbon tax imposition

(SC6) and 24.24% under high level wind power penetration rate and high level carbon

tax imposition relative to base case. Detailed results of gas generator profit are displayed

in Fig. 5.8 (c).

Profit of oil generator is decreased by 16.76% under low level wind power penetration

rate (SC1) and 33.24% under high level wind power penetration rate (SC2) relative

to base case. Thus the increase in wind power penetration rate decreases profit of oil

generator. Profit of oil generator is decreased by 3.09% under low level carbon tax

imposition (SC3) and 11.05% under high level carbon tax imposition (SC4) relative to

base case. Thus the increase in carbon tax rate decreases profit of nuclear generator.

Profit of oil generator is also decreased in mixed options (SC5-SC8) relative to base case.

The amount of the decrease in profit of oil generator in mixed options is smaller than

the sum of the decrease in profit from each separate option. Thus joint effects of these

two options show negative correlation in the decrease in profit of oil generator. Detailed

results of oil generator profit are displayed in Fig. 5.8 (d).

5.3.6 Effects on Wind Power Generator Profit and Tax Revenue

Renewable power generator usually faces negative profit (loss) in real world because

the life time cost of renewable generator is higher than the life time revenue of it. Thus

governments provide subsidies for the loss of renewable power generator. For example,

the U.S. Federal Government gives federal production tax credit (PTC), 2.3 cents per

kilowatt-hour (3.4 to 3.7 cents per kilowatt-hour in pre-tax value), to subsidize for the

loss of renewable electricity generation [48].

Governments can earn carbon tax revenue by imposing carbon tax. Carbon tax rev-

enue can give several policy options to governments such as carbon tax swap with income

tax, investing in renewable resources, and carbon capture-and-storage technology [62] or
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Figure 5.8: Effects of CO2 reduction options on profit by fuel type

can be used for further tax reforms [17].

The carbon tax imposition can increase profit of renewable generator because it in-

creases electricity price but does not increase dispatch cost of renewable generator. Also,

the wind power penetration can reduce carbon tax revenue by replacing thermal gener-

ation dispatch which is the source of carbon tax revenue.

In the simulation results, wind power generator faces loss in all scenarios, because its

cost which is measured as exogenous levelized cost is usually greater than average LMP

per MWh. The profit of wind power generator under low level wind power penetration

rate is greater than the profit of wind power generator under high level wind power pene-

tration rate given the same level of carbon tax imposition; profit of wind power generator

in SC1, SC5 and SC7 is greater than the profit in SC2, SC6 and SC8 respectively. Thus

profit of wind power generator decreases as wind power penetration rate increases.
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On the other hand, profit of wind power generator under high level carbon tax imposi-

tion is greater than profit of wind power generator under low level carbon tax imposition

given the same level of wind power penetration rate; profit of wind power generator in

SC4, SC7 and SC8 is greater than the profit in SC3, SC5 and SC6 respectively. Thus

profit of wind power generator increases as carbon tax rate increases.

The carbon tax revenue under low level wind power penetration rate is greater than

carbon tax revenue under high level wind power penetration rate given the same level

of carbon tax imposition; carbon tax revenue in SC3 and SC4 is greater than the profit

in SC5 and SC6 respectively, and the profit in SC7 and SC8 is greater than the profit

in SC5 and SC6 respectively. Thus the carbon tax revenue decreases as wind power

penetration rate increases.

On the other hand, the carbon tax revenue under high level carbon tax rate is greater

than the carbon tax revenue under low level wind power penetration rate given the same

level of wind power penetration rate; carbon tax revenue in SC3 and SC4 is greater than

the profit in SC5 and SC7 respectively, and the profit in SC5 and SC7 is greater than

the profit in SC6 and SC8 respectively. Thus the carbon tax revenue increases as carbon

tax rate increases.

Whenever the wind penetration and carbon tax imposition coexist in the simulated

electricity market, carbon tax revenue is greater than the loss of wind power genera-

tor. Thus carbon tax revenues are sufficient to subsidize for all loss when these two

options coexist in the simulated electricity market. More detailed results are presented

in Table 5.4
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Table 5.4: Simulated daily average profit of wind power generator and carbon tax rev-

enues ($)

Scenarios W. Profit CT. Revenue W. Profit + CT. Revenue

SC1 -190964 N/A -190964

(44621) (44621)

SC2 -439281 N/A -439281

(165098) (165098)

SC3 N/A 989400 989400

(74703) (74703)

SC4 N/A 3044257 3044257

(229841) (229841)

SC5 -159404 958025 798621

(33663) (62919) (32198)

SC6 -380460 930562 550102

(142272) (53843) (107421)

SC7 -94423 2947753 2853330

(13788) (193599) (181856)

SC8 -251475 2863163 2611688

(94894) (165653) (121768)

5.4 Conclusions and Policy Implications

This paper analyzes the impact of two treatment factors for CO2 reduction options,

a wind power penetration and a carbon tax imposition, on CO2 emissions and other

electricity market key outcomes using the Midcontinent Independent System Operator

(MISO) data. The analysis is implemented based on the agent-based electricity market
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platform called the AMES Wholesale Power Market Test Bed. Specifically, the MISO

Midwest 7-zone test bed developed in Chapter 4 is used to study the effects of CO2 re-

duction options on electricity market outcomes. This test bed captures the core features

of MISO, such as MISO operations, physical attributes of MISO generation technology

and capacity by fuel type, and MISO transmission constraints during 2013. Also, simu-

lated scenarios are established based on practical grounds of carbon tax imposition and

wind power policies: carbon tax scenarios are based on a proposal in the U.S. Congres-

sional Budget Office Report [17] and wind power penetration rate scenarios are based on

the current MISO wind power penetration rate and the 2025 MISO projection [43]. So,

this model is not purely hypothetical but an empirically-based test bed. Thus this test

bed can be useful to obtain meaningful results and implications for real-world electricity

markets through sensitivity studies.

Based on these scenarios, various sensitivity studies are implemented to investigate

the effects of CO2 reduction options on CO2 emissions, net load and its volatility, average

LMP and its volatility, outcomes of thermal generators such as dispatch level and profit

relative to base case, electricity markets without the wind power penetration and the

carbon tax imposition. The effects of CO2 reduction options on profit of wind power

generator and government carbon tax revenues is also investigated in the simulated

electricity market. Below a concise summary and implications are provided.

(i) Joint CO2 emission reduction options can substantially reduce total CO2 emissions.

It is shown that CO2 emissions are decrease by 6.17% under 17.7% of wind penetration

rate and $20/tCO2 of carbon tax imposition relative to base case.

(ii) The effects of CO2 reduction options on CO2 emissions can differ by fuel type

CO2 emissions from coal, gas, and oil generation are decreased under wind power pen-

etration relative to base case. CO2 emissions from coal and oil generation are decreased

under carbon tax imposition but CO2 emissions from gas generation are increased under

carbon tax imposition relative to base case. On the other hand, CO2 emissions from
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nuclear generation are not changed under these two CO2 reduction options because it

does not emit CO2 at all.

(iii) CO2 reduction options can affect net load and its volatility

Net load decreases but its volatility increases as wind penetration rate increases

relative to base case.

(iv) CO2 reduction options can affect average LMP and its volatility

Average LMP decreases but its volatility increases as wind penetration rate increases

relative to base case. On the other hand, average LMP increases but its volatility de-

creases as carbon tax rate increases relative to base case.

(v) The effects of CO2 reduction options on generation dispatch can differ by fuel type

Generation dispatch of coal, gas, and oil generation is decreased but generation dis-

patch of nuclear generation is increased under wind power penetration relative to base

case. Generation dispatch of coal and oil generation is decreased but generation dispatch

of nuclear and gas generation is increased under carbon tax imposition relative to base

case.

(vi) CO2 reduction options can affect total profit of thermal generator

Total profit of thermal generator is decreased under wind power penetration or carbon

tax imposition relative to base case.

(vii) The effects of CO2 reduction options on profit can differ by fuel type

Profit of nuclear, coal, and oil generator is decreased under wind power penetration

relative to base case. Profit of gas generator is decreased under 9.66% of wind power

penetration rate but it is increased under 17.7% of wind power penetration rate relative

to base case. Profit of coal and oil generation is decreased but profit of nuclear and gas

generation is increased under the carbon tax imposition relative to base case.

Thus governments need to investigate the effects of the decrease in profit of thermal

generator by fuel type for implementing CO2 emission reduction options. Guarantee-
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ing appropriate profit is important to attain resource adequacy by providing proper

incentives for generator to invest in electric power utilities. Thus appropriate profit is

inevitable factor to obtain electric power market reliability and security.

Under this circumstance, governments should consider plans to attain appropriate

profit when they introduce CO2 emission reduction options. For example, guaranteeing

appropriate coal generator profit is important because coal generator faces the decrease

in profit under any simulated scenarios. If not, coal generator retires or do not invest on

its infrastructure. This will reduce capacity of coal generation which plays an important

role as base generation and electricity markets can suffer from insufficient capacity.

(viii) The effects of CO2 reduction options on profit of wind power generator and carbon

tax revenue

The profit of wind power generator increases as wind power penetration rate de-

creases and carbon tax rate increases. The carbon tax revenue increases as wind power

penetration rate decreases and carbon tax imposition rate increases.

Although wind power generator faces loss in the simulation results, carbon tax revenue

is greater than the loss of wind power generator whenever the wind penetration and the

carbon tax imposition coexist in electricity markets. Thus carbon tax revenue can be

sufficient source of subsidies for the loss of wind power generator when these two options.

In addition to this study, we can consider investment decisions for wind power gen-

eration. The decision making process for wind power generation investment can be

incorporated into the test bed for future work. Also, future work will permit learning

capabilities for electric power traders to analyze strategic behaviors and their effects

on CO2 emissions and other market key outcomes given CO2 reduction options. More-

over, price-responsive demands can be included, which is an important aspect of the

envisioned future smart grid. Future work can also consider incorporation of electricity

market models into Macroeconomic models to investigate the effects of CO2 emission

reduction options on national and/or global economies.
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CHAPTER 6. GENERAL CONCLUSION

This thesis investigates the implication of empirical grounded electric power mar-

ket facts using multiple methodologies, including market and contract design, analytic

method, statistical method, and agent-based simulation method. Basically, this thesis

focuses on centrally-managed electric power markets.

European and U.S. electricity sectors have undergone substantial restructuring over

the past twenty years. They have devolved from highly regulated systems operated

by vertically integrated utilities to relatively decentralized systems based more fully on

market valuation and allocation mechanisms.

As part of this restructuring, oversight agencies have been established at several

different levels to encourage cooperation and coordination. The European Network of

Transmission System Operators for Electricity (ENTSO-E), founded in 2008, currently

consists of forty-one Transmission System Operators (TSOs) from thirty-four European

countries; its primary task is to promote the coordinated management of the European

power grid. The U.S. Federal Energy Regulatory Commission (FERC) oversees the ac-

tivities of seven Independent System Operators (ISOs), established since the mid-1990s,

that are tasked with managing power system operations in seven U.S. electric energy

regions comprising over 60% of U.S. generating capacity: namely, CAISO, ERCOT,

ISO-NE, MISO, NYISO, PJM, and SPP.

These restructuring efforts have been driven by a desire to ensure efficient energy

production and utilization, reliable energy supplies, affordable energy prices, and effective

rules and regulations for environmental protection. In keeping with the latter goal, a
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dramatic change is taking place in energy mixes: namely, a rapid penetration of variable

energy resources combined with a movement away from traditional thermal generation.

Variable energy resources (VERs) are renewable energy resources, such as wind and

solar power, whose generation cannot be closely controlled to match changes in load

or to meet other system requirements. Consequently, the integration of VERs tends

to increase the volatility of net load (ie, load minus as-available generation) as well as

the frequency of strong ramp events. Flexibility in service provision by other types of

resources then becomes increasingly important to maintain the reliability and efficiency

of power system operations.

To accommodate increased VER penetration, TSOs and ISOs have introduced major

changes in their market rules and operational procedures. These changes have included

new product definitions to enhance load-following capability (eg, ramping products),

revised market eligibility requirements to encourage greater VER participation, and the

introduction of capacity markets in an attempt to ensure sufficient thermal generation

as a backstop for the intermittency of VER generation.

Also, CO2 emission issues are increasing important in electric power markets. In the

U.S., the largest source of CO2 emissions is the electricity sector, which was responsible

for 32% of total emissions in 2012. The Obama Administration proposed a Clean Power

Plan in June 2014; nationwide, by 2030, this plan would achieve approximately 30 percent

of CO2 emission reduction relative to 2005 CO2 emission levels in the power sector. There

are several important issues arising from carbon mitigation options such as a carbon tax

imposition and increase penetration of VERs need to be resolved.

First, current electric power markets need appropriate compensation for flexibility

in service provision. TSO/ISO product definitions are specified in broad rigid terms

(eg, capacity, energy, ramp-rate, regulation, non-spinning reserve) that do not permit

resources to be further differentiated and compensated on the basis of additional valuable

flexibility in service provision, such as an ability to ramp up and down between minimum
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and maximum values over very short time intervals. Second, VERs increase volatility

and uncertainty in electric power markets because VERs are non-dispatchable. When

the penetration of renewable energy reaches relatively high levels, characteristics and

operations of the current power system will be significantly changed and additional costs

will be incurred in order to ensure sufficient resources for system reliability. Third,

carbon tax imposition can change relative generation costs of generators based on carbon

intensities implied by fuel type. This can lead fuel mix changes in current power markets

and affects market participants’ profits. Thus a thorough studies are necessary to resolve

these key issues in electric power markets.

Chapter 2 introduces standardized energy and reserve contracts with swing (flexi-

bility) in their contractual terms to resolve key issues that have arisen for centrally-

managed wholesale electric power markets with increased penetration of renewable en-

ergy resources. Key policy implications of our proposed market-supported trading of

standardized contracts (SCs) permitting swing (flexibility) in their contractual terms are

as follows:

• The SC system permits separate full market-based compensation for service avail-

ability and service performance

• The SC system facilitates a level playing field for market participation

• The SC system facilitates co-optimization of energy and reserve markets

• The SC system supports forward-market trading of energy and reserve

• The SC system permits resources to offer flexible service availability

• The SC system gives system operators flexibility in their real-time use of offered

services

• The SC system encourages accurate load forecasting and the accurate following of

real-time dispatch instructions
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• The SC system permits resources to internally manage unit commitment and

generation-capacity constraints

• The SC system permits robust-control management of uncertain net load

• The SC system eliminates need for out-of-market payment adjustments

• The SC system reduces the complexity of market rules

Chapter 3 develops an extended system pattern method for short-term forecasting of

power market performance. Chapter 3 demonstrates that the penetration of renewable

energy resources can change the realization of system patterns. Also, uncertainties em-

bedded in the non-dispatchable renewable energy can change the system pattern given

fixed load. The transition probabilities governing the system pattern changes depend

on the probability density function of the non-dispatchable renewable power generation.

Also, Chapter 3 introduces the concept of empirically-based system pattern transition

matrix which can be constructed from historical system pattern data. This transition

matrix can be applicable to the prediction of system patterns (or status of system vari-

ables). In addition, the system pattern method can be applicable to a load scenario

reduction method, because i) each system pattern corresponds to a unique combination

of binding constraints in the power system; and ii) the LMP volatility is relatively lower

when the net load fluctuates within the same system pattern, while the LMP volatility

is relatively higher when the net load fluctuates across the system patterns.

Chapter 4 develops an empirically-based test system based on data from the Mid-

continent Independent System Operator (MISO) for application in electric power market

studies. This test system embeds MISO’s rules of operation, physical attributes of market

generation technology and capacity, transmission constraints, and capacity proportion

by fuel type. The performance test of the test system reports that this test system can

well demonstrate the actual MISO situations.
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Chapter 5 systematically analyzes the effects of a carbon tax and wind power pene-

tration on electric power market key outcomes such as CO2 emissions, generator dispatch

levels, costs, revenues and profits, and carbon tax revenues using the test system devel-

oped in Chapter 4. Key findings are as follows:

• Joint CO2 emission reduction options can substantially reduce total CO2 emissions.

• The effects of CO2 reduction options on CO2 emissions can differ by fuel type

• CO2 reduction options can affect net load and its volatility

• CO2 reduction options can affect average LMP and its volatility

• The effects of CO2 reduction options on generation dispatch can differ by fuel type

• CO2 reduction options can affect total profit of thermal generator

• The effects of CO2 reduction options on profit can differ by fuel type

• The effects of CO2 reduction options on profit of wind power generator and carbon

tax revenue

For interesting extensions of Chapter 2, we can explore more carefully the optimal

design of linked forward markets for the market supported trading of standardized con-

tracts. we can also develop a software test bed that will permit the study of these issues

by means of systematic computational experiments.

For interesting extensions of Chapter 5, we can consider investment decisions for wind

power generation. The decision making process for wind power generation investment

can be incorporated into the test bed for future work. Future work can also permit

learning capabilities for electric power traders to analyze strategic behaviors and their

effects on CO2 emissions and other market key outcomes given CO2 reduction options.

Moreover, price-responsive demands can be included, which is an important aspect of the
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envisioned future smart grid. Future work can also consider incorporation of electricity

market models into Macroeconomic models to investigate the effects of CO2 emission

reduction options on national and/or global economies.
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APPENDIX A. COMPARISON: PROPOSED SC SYSTEM

VS. REAL-WORLD ISO

Table A.1: Comparison between proposed SC system and real-world ISOs

ISO name Product Contract Price Settlement Changes under Remarks on

name form determination proposed proposed

process SC system SC system

CAISO Capacity Bilateral contracts Bilateral contracts Negotiated by

counterparties 1. No rigid 1. SC system

Regulation DAM/RTM DAM/RTM co-opt Capacity & separation of does not

contracts process for reg., performance capacity, reserve limit bilateral

other anc. payments and energy trade between

services, & energy (Order 755 products market

compliance) participants

Other ancillary DAM/RTM DAM/RTM co-opt Marginal pricing 2. SCs with swing

services contracts process for reg., can be used for 2. SC system

other anc. capcity, reserve uses discriminatory

services, & energy (various types), pricing for

Energy DAM/RTM DAM/RTM co-opt LMP pricing and energy SC procurement

contracts process for reg., while current

other anc. 3. Cleared SCs centrally-

services, & energy are separately managed

ERCOT Capacity No capacity DAM/RTM LMP pricing compensated for markets use

market scarcity pricing service availability local uniform

Regulation DAM/RTM DAM/RTM co-opt Marginal pricing and for service pricing for

contracts process for reg., performance under product

other anc. a discriminatory- procurement

services, & energy price mechanism

Other ancillary DAM/RTM DAM/RTM co-opt Marginal pricing 3. SC system’s

services contracts process for reg., 4. Service two-part pricing

other anc. availability is attained by

services, & energy compensated at discriminatory price

Energy DAM/RTM DAM/RTM co-opt LMP pricing time of SC mechanism

contracts process for reg., procurement eliminates

other anc. through SC offer need for

services, & energy prices and out-of-market
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ISO name Product Contract Price Settlement Changes under Remarks on

name form determination proposed proposed

process SC system SC system

ISO-NE Capacity Forward capacity Capacity Several-steps-ahead SC service make-whole

market contracts auction process to determine performance is payments

capacity settlements compensated

Regulation RTM RTM co-opt Capacity & performance ex post via

contracts process for reg., payments (Order 755 SC performance

other anc. compliance) payment methods

services, & energy

Other ancillary Forward Forward Marginal pricing

services reserve market reserve market;

& RTM RTM co-opt

contracts process for reg.,

other anc.

services, & energy

Energy DAM/RTM Energy opt LMP pricing

contracts in DAM with

reserve

constraint;

Energy co-opt

with reg. &

other anc.

services in

RTM

MISO Capacity Forward capacity Capacity Several-steps-ahead

market contracts auction process to determine

capacity settlements

Regulation DAM/RTM DAM/RTM co-opt Capacity & performance

contracts process for reg., payments (Order 755

other anc. compliance)

services, & energy

Other ancillary DAM/RTM DAM/RTM co-opt Marginal pricing

services contracts process for reg.,

other anc.

services, & energy

Energy DAM/RTM DAM/RTM co-opt LMP pricing

contracts process for reg.,

other anc.

services, & energy

NYISO Capacity Forward capacity Capacity Several steps ahead

market contracts auction process to determine

capacity settlements

Regulation DAM/RTM DAM/RTM co-opt Capacity & performance

contracts process for reg., payments (Order 755

other anc. compliance)

services, & energy

Other ancillary DAM/RTM DAM/RTM co-opt Marginal pricing

services contracts process for reg.,

other anc.

services, & energy

Energy DAM/RTM DAM/RTM co-opt LMP pricing

contracts process for reg.,

other anc.

services, & energy
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ISO name Product Contract Price Settlement Changes under Remarks on

name form determination proposed proposed

process SC system SC system

PJM Capacity Forward capacity Capacity Several-steps-ahead

market contracts auction process to determine

capacity settlements

Regulation DAM/RTM DAM/RTM co-opt Capacity & performance

contracts process for reg., payments (Order 755

other anc. compliance)

services, & energy

Other ancillary DAM/RTM DAM/RTM co-opt Marginal pricing

services contracts process for reg.,

other anc.

services, & energy

Energy DAM/RTM DAM/RTM co-opt LMP pricing

contracts process for reg.,

other anc.

services, & energy

SPP Capacity Bilateral contracts Load shares Invoiced

scheduled in DAM adjusted by by SPP

self-provision

Regulation DAM/RTM DAM/RTM co-opt Capacity & performance

contracts process for reg., payments (Order 755

other anc. compliance)

services, & energy

Other ancillary DAM/RTM DAM/RTM co-opt Marginal pricing

services contracts process for reg.,

other anc.

services, & energy

Energy DAM/RTM DAM/RTM co-opt LMP pricing

contracts process for reg.,

other anc.

services, & energy
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APPENDIX B. PROOF OF PROPOSITION 2

The proof of Proposition 2 follows the proof presented in Zhou et al. [97]. The

Lagrangian function for the extended DC-OPF problem (3.19) can be written as follows:

L =
K∑
k=1

[akPk + bkP
2
k ] + λ

K∑
k=1

[Pk − LNETk ]

+
2K∑
k′=1

ψk′(
K∑
k=1

αkk′Pk − Ck′)

+
2T∑
τ=1

µτ (
K∑
k=1

βkτ [Pk − LNETk ]− Fτ ) (B.1)

The first order necessary Karush-Kuhn-Tucker (KKT) conditions for this problem

are expressed as follows:

ak + 2bkPk + λ+
2K∑
k′=1

ψk′αkk′

+
2T∑
τ=1

µτβkτ = 0, k = 1, ..., K

K∑
k=1

[Pk − LNETk ] = 0,

ψk′(
K∑
k=1

αkk′Pk − Ck′) = 0,

ψk′ ≥ 0,
K∑
k=1

αkk′Pk − Ck′ ≤ 0, k′ = 1, .., 2K
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µτ (
K∑
i=k

βkτ [Pk − LNETk ]− Fτ = 0,

µτ ≥ 0,
K∑
k=1

βkτ [Pk − LNETk ]− Fτ = 0, τ = 1, .., 2T

Table B.1 describes the number of binding and non-binding constraints for genera-

tion capacities and transmission lines and corresponding slack variables for non-binding

constraints.

Table B.1: Number of binding and non-binding constraints

Constraint Binding Non-Binding Slack

category constraints constraints variables

Capacity First B 2K − B Sk′

Line limit First M 2T −M Vτ

By using slack-variables introduced in Table B.1, the KKT first order conditions can

be rewritten as follows:

ak + 2bkPk + λ+
2K∑
k′=1

ψk′αkk′

+
2T∑
τ=1

µτβkτ = 0, k = 1, ..., K

K∑
k=1

[Pk − LNETk ] = 0,

K∑
k=1

αkk′Pk − C ′k = 0,

ψk′ ≥ 0, k′ = 1, ...,B
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K∑
k=1

αkk′Pk − Ck′ = −Sk′ ,

ψk′ = 0, k′ = B + 1, ..., 2K

K∑
k=1

βkτPk −
K∑
k=1

βkτL
NET
k − Fτ = 0,

µτ ≥ 0, τ = 1, ...,M

K∑
k=1

βkτPk −
K∑
k=1

βkτL
NET
k − Fτ = −Vτ ,

µτ = 0, τ =M+ 1, ..., 2T

By total differentiation of these KKT first order conditions, the sensitivity relations

between variables can be expressed as follows:

2bkdPk + dλ+
B∑

k′=1

αkk′dψk′

+
M∑
τ=1

βkτdµτ = 0, k = 1, ..., K (B.2)

K∑
k=1

[dPk − dLNETk ] = 0, (B.3)

K∑
k=1

αkk′dPk = 0, k′ = 1, ...,B (B.4)

K∑
k=1

βkτdPk =
K∑
k=1

βkτdL
NET
k ,

τ = 1, ...,M (B.5)
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K∑
k=1

αkk′dPk = −dSk′ , k′ = B + 1, ..., 2K (B.6)

K∑
k=1

βkτdPk =
K∑
k=1

βkτdL
NET
k − dVτ ,

τ =M+ 1, ..., 2T (B.7)

Let only LNETk be varied while all other net loads are held fixed, i.e., dLNETk 6= 0 and

dLNETk′ = 0 for k′ = 1, ..., k− 1, k+ 1, ..., K. Dividing the sensitivity relations by dLNETk ,

the resulting relations can be expressed in matrix form as follows:



2b1 0 · · · 0 1 α11 α12 · · · α1B β11 β12 · · · β1M

0 2b2 · · · 0 1 α21 α22 · · · α2B β21 β22 · · · β2M
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

0 0 · · · 2bK 1 αK1 αK2 · · · αKB βK1 βK2 · · · βKM

1 1 · · · 1 0 0 0 · · · 0 0 0 · · · 0

α11 α21 · · · αK1 0 0 0 · · · 0 0 0 · · · 0

α12 α22 · · · αK2 0 0 0 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...

α1B α2B · · · αKB 0 0 0 · · · 0 0 0 · · · 0

β11 β21 · · · βK1 0 0 0 · · · 0 0 0 · · · 0

β12 β22 · · · βK2 0 0 0 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...

β1M β2M · · · βKM 0 0 0 · · · 0 0 0 · · · 0





dP1/dL
NET
k

dP2/dL
NET
k

...

dPK/dL
NET
k

dλ/dLNET
k

dψ1/dL
NET
k

dψ2/dL
NET
k

...

dψB/dL
NET
k

dµ1/dL
NET
k

dµ2/dL
NET
k

...

dµM/dL
NET
k



=



0

0

...

0

1

0

0

...

0

βk1

βk2
...

βkM


(B.8)
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

α1(B+1) α2(B+1) · · · αK(B+1)

α1(B+2) α2(B+2) · · · αK(B+2)

...
...

. . .
...

α1(2K) α2(2K) · · · αK(2K)

β1(M+1) β2(M+1) · · · βK(M+1)

β1(M+2) β2(M+2) · · · βK(M+2)

...
...

. . .
...

β1(2T ) β2(2T ) · · · βK(2T )





dP1/dLk

dP2/dLk

...

dPK/dLk


=



−dSB+1/dL
NET
k

−dSB+2/dL
NET
k

...

−dS2K/dLNET
k

βi(M+1) − dVM+1/dL
NET
k

βk(M+2) − dVM+2/dL
NET
k

...

βk(2T ) − dV2T /dLNET
k



(B.9)

Zhou et al. [98] prove that the following regularity condition automatically satisfied

by DC OPF solutions suffices to guarantee the invertibility of the coefficient matrix (B.8):

B +M+ 1 ≤ K (B.10)

Consequently the indicated system variable variations have a unique solution and this

solution is a linear function of the net load variation given specific system pattern j ∈ J .

By substituting this solution into (B.9), the slack variables can also be solved for as

linear-affine functions of the net load variation and have a unique solution. The solution

can be expressed as a reduced form with JSV,jkη , where SV denotes a relevant sub-vector of

the system variables such as power generation level, P , power flows in transmission line,

F , and LMPs; j denotes the underlying system pattern; η denotes the ηth element in

the sub-vector of the specific system variable; and k denotes the index of bus for the net

load variation. Following equation (B.11) and equation (B.12) show particular relations

for power generation level, P , and power flows in transmission line, F .



dP1/dL
NET
k

dP2/dL
NET
k

...

dPK/dL
NET
k


=



JP,j1k

JP,j2k

...

JP,jKk


(B.11)
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

dVM+1/dL
NET
k

dVM+2/dL
NET
k

...

dV2T/dLNETk


=



JF,j(M+1)k

JF,j(M+2)k

...

JF,j(2T )k


(B.12)

Assume that every value in a net load interval between LNET0k and LNETk is associated

with the same system pattern j. Let Pk′ and P 0
k′ denote the power generation solutions

at bus k′ for given net loads LNET0k and LNETk respectively. By integrating (B.11) with

respect to dLNETk , a linear-affine relation between power generation and net load can be

derived as follows:

∫ LNETk

LNET0
k

dPk′

dLNETk

dLNETk =

∫ LNETk

LNET0
k

JP,jk′kdL
NET
k (B.13)

Pk′ − P 0
k′ = JP,jk′k [LNETk − LNET0k ] (B.14)

Pk′ = JP,jk′kL
NET
k + [P 0

k′ − J
P,j
k′kL

NET0
k ] (B.15)

By expressing this equation in vector form, the relation between power generation

and net load can be expressed as a linear-affine function for each system pattern j taking

the general form.

Pj = JP,jLNET + OP,j (B.16)

where Pj = [P j
1 , ..., P

j
K ]′, LNET,j = [LNET,j1 , ..., LNET,jK ]′, JP,j (sensitivity matrix) is a

K ×K matrix with k′th row and kth column element JP,jk′k and OP,j (ordinate vector) is

a K × 1 vector.

Similarly, this linear-affine relation can also be derived for other system variables.

Particularly, the linear-affine function between power flows in transmission lines and net

loads conditional on a system pattern j is as follows:

Fj = JF,jLNET + OF,j (B.17)
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where Fj = [F j
1 , ..., F

j
T ]′ is a T × 1 vector of power flows in transmission lines, JF,j is a

T×K sensitivity matrix of power flows in transmission lines, and OF,j is a T×1 ordinate

vector of power flows in transmission lines.

Also, the linear-affine relation between LMPs and net load conditional on system

pattern j is as follows:

LMPj = JLMP,jLNET + OLMP,j (B.18)

where LMPj = [LMP j
1 , ..., LMP j

N ]′ is a K × 1 LMP vector , JLMP,j is a K ×K LMP

sensitivity matrix, and OLMP,j is a K × 1 LMP ordinate vector.

Moreover, the fuel types of the generating units located at each bus k are known in

practice or can be assigned in simulation models. Table 5.1 in Section 3.3.1.1 already

describes the coefficient of CO2 emission per KWh (or MWh) by fuel type. Therefore,

the linear-affine relation between power generation level and net load conditional on

the system pattern j in equation (62) can be applied to obtain a linear-affine relation

between CO2 emissions and net load in electricity markets by the multiplying K ×K

CO2 emission coefficient matrix ECO2 on both sides of equation (62).1

ECO2 =



eCO2
11 0 · · · 0

0 eCO2
22 · · · 0

...
...

. . .
...

0 0 · · · eCO2
KK


(B.19)

ECO2Pj = ECO2JP,jLNET + ECO2OP,j

⇒ CO2j = JCO2,jLNET + OCO2,j (B.20)

1By substituting other pollution emission coefficient matrices ( for example, SO×, NO×,...) corre-
sponding to generation fuel type in place of the CO2 emission coefficient matrix, the linear-affine relation
between CO2 emissions and net load can be easily converted into a linear-affine relation between other
types of pollution emissions and net load.
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where eCO2
kk is a CO2 emission coefficient for the generating unit corresponding to its fuel

type at bus k, CO2j is a K × 1 CO2 emission vector, JCO2,j is a K ×K CO2 emission

sensitivity matrix, and OCO2,j is a K × 1 CO2 emission ordinate vector.
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APPENDIX C. SIMULATED OUTCOMES FOR ALL CO2

REDUCTION SCENARIOS

• CO2-N: Average daily CO2 emissions from nuclear generators (tCO2)

• CO2-C: Average daily CO2 emissions from coal generators (tCO2)

• CO2-G: Average daily CO2 emissions from gas generators (tCO2)

• CO2-O: Average daily CO2 emissions from oil generators (tCO2)

• CO2-AG: Average daily CO2 emissions from all generators (tCO2)

• N-L: Average daily net load (MW)

• N-L CV: Average daily coefficient of variation of net load

• LMP: Average daily LMPs ($)

• LMP CV: Average daily coefficient of variation of LMPs

• Disp-N: Average daily dispatch level of nuclear generators (MW)

• Disp-C: Average daily dispatch level of coal generators (MW)

• Disp-G: Average daily dispatch level of gas generators (MW)

• Disp-O: Average daily dispatch level of oil generators (MW)

• Disp-W: Average daily dispatch level of wind power generators (MW)

• Disp-AG: Average daily dispatch level of all generators (MW)

• Rev-N: Average daily revenues of nuclear generators ($)
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• Rev-C: Average daily revenues of coal generators ($)

• Rev-G: Average daily revenues of gas generators ($)

• Rev-O: Average daily revenues of oil generators ($)

• Rev-Tm: Average daily revenues of thermal generators ($)

• Rev-W: Average daily revenues of wind power generators ($)

• Rev-AG: Average daily revenues of all generators ($)

• Cost-N: Average daily costs of nuclear generators ($)

• Cost-C: Average daily costs of coal generators ($)

• Cost-G: Average daily costs of gas generators ($)

• Cost-O: Average daily costs of oil generators ($)

• Cost-Tm: Average daily costs of thermal generators ($)

• Cost-W: Average daily costs of wind power generators ($)

• Cost-AG: Average daily costs of all generators ($)

• Prof-N: Average daily profits of nuclear generators ($)

• Prof-C: Average daily profits of coal generators ($)

• Prof-G: Average daily profits of gas generators ($)

• Prof-O: Average daily profits of oil generators ($)

• Prof-O: Average daily profits of thermal generators ($)

• Prof-W: Average daily profits of wind power generators ($)

• Prof-AG: Average daily profits of all generators ($)

• Tax-N: Average daily carbon tax revenues from nuclear generators ($)

• Tax-C: Average daily carbon tax revenues from coal generators ($)
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• Tax-G: Average daily carbon tax revenues from nuclear generators ($)

• Tax-O: Average daily carbon tax revenues from nuclear generators ($)

• Tax-AG: Average daily carbon tax revenues from nuclear generators ($)

• Numbers in parenthesis denote standard deviations

Table C.1: All simulated outcomes for CO2 reduction scenarios

BC SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

CO2-N 0 0 0 0 0 0 0 0 0

(0) (0) (0) (0) (0) (0) (0) (0) (0)

CO2-C 137648 135821 133617 137294 137291 135120 132768 135125 132763

(5003) (4744) (4382) (5327) (5328) (5015) (4554) (5017) (4554)

CO2-G 11130 8856 7599 11133 11137 8952 7606 8956 7616

(5493) (3950) (3173) (5493) (5495) (3960) (3176) (3960) (3178)

CO2-O 3789 3271 2785 3789 3784 3317 2789 3307 2779

(1232) (1064) (897) (1234) (1230) (1074) (899) (1070) (895)

CO2-AG 152567 147948 144001 152215 152213 147389 143163 147388 143158

(11203) (9379) (8202) (11493) (11492) (9680) (8283) (9680) (8283)

N-L 184752 178486 172972 184752 184752 178486 172972 178486 172972

(15586) (13148) (11067) (15586) (15586) (13148) (11067) (13148) (11067)

N-L CV 0.70 0.74 0.77 0.70 0.70 0.74 0.77 0.74 0.77

LMP 57 51 47 61 71 56 52 67 63

(12) (10) (8) (11) (10) (9) (8) (8) (7)

LMP CV 0.41 0.47 0.51 0.36 0.27 0.40 0.44 0.30 0.32

Disp-N 18255 18621 18257 18615 18615 19113 19113 19113 19113

(1956) (425) (555) (1994) (1994) (1) (1) (0) (0)

Disp-C 141671 139791 137523 141307 141305 139070 136649 139074 136643

(5149) (4883) (4510) (5483) (5484) (5161) (4687) (5164) (4687)

Disp-G 20094 15989 13719 20099 20107 16161 13732 16168 13750

(9916) (7132) (5728) (9917) (9921) (7149) (5734) (7149) (5738)

Disp-O 4783 4129 3515 4782 4777 4187 3520 4175 3508

(1555) (1343) (1132) (1558) (1553) (1356) (1135) (1351) (1130)

Disp-W N/A 6266 11780 N/A N/A 6266 11780 6266 11780

(2607) (4901) (2607) (4901) (2607) (4901)

Disp-AG 184803 184796 184794 184803 184803 184796 184794 184797 184795

(18576) (16390) (16827) (18952) (18951) (16275) (16459) (16272) (16457)
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BC SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

Rev-N 1018381 945446 850781 1114164 1295107 1050827 960528 1251218 1167731

(232861) (199578) (160611) (222723) (216426) (184619) (150747) (163936) (134855)

Rev-C 8291083 7558994 6951668 8928690 10256180 8202116 7575903 9606191 8985272

(1829975) (1580845) (1348935) (1791801) (1714240) (1552064) (1328801) (1464984) (1262784)

Rev-G 1567585 1247738 1093622 1640240 1791294 1319674 1143114 1441128 1245760

(786604) (565147) (488022) (822304) (896776) (592163) (507114) (645626) (547030)

Rev-O 350463 296778 244503 369611 406262 315955 258086 349456 286597

(117310) (101865) (82011) (123476) (135406) (107298) (86495) (117112) (95085)

Rev-Tm 11227513 10048956 9140574 12052705 13748843 10888573 9937631 12647993 11685361

(2865172) (2409948) (2021547) (2845786) (2826452) (2396485) (2017178) (2343697) (1980477)

Rev-W N/A 314075 510192 N/A N/A 345635 569013 410616 697999

(168616) (240260) (179049) (262786) (200280) (311793)

Rev-AG 11227513 10048956 9140574 12052705 13748843 10888573 9937631 12647993 11685361

(2865172) (2409948) (2021547) (2845786) (2826452) (2396485) (2017178) (2343697) (1980477)

Cost-N 283063 288862 283290 288441 288441 296208 296210 296217 296217

(30630) (6492) (8577) (31202) (31202) (24) (22) (0) (0)

Cost-C 2547017 2508787 2465534 3432192 5285130 3373510 3311946 5197535 5103172

(109897) (103837) (96901) (151065) (222989) (142171) (130164) (209910) (191580)

Cost-G 1536253 1223280 1052285 1608882 1759772 1294645 1102653 1415976 1206834

(761964) (548806) (442822) (797724) (872151) (575811) (463845) (629252) (507114)

Cost-O 171907 148378 126214 196522 247386 172054 144531 216224 181563

(55821) (48261) (40623) (63951) (80357) (55702) (46595) (69987) (58452)

Cost-Tm 4538240 4169306 3927324 5526037 7580729 5136417 4855340 7125952 6787786

(896427) (687770) (566793) (970653) (1123036) (752185) (619993) (880520) (729731)

Cost-W N/A 505039 949473 N/A N/A 505039 949473 505039 949473

(210133) (395050) (210133) (395050) (210133) (395050)

Cost-AG 4538240 4169306 3927324 5526037 7580729 5136417 4855340 7125952 6787786

(896427) (687770) (566793) (970653) (1123036) (752185) (619993) (880520) (729731)

Prof-N 735318 656584 567490 825722 1006666 754619 664318 955002 871514

(221387) (194378) (158148) (213417) (203243) (184627) (150750) (163936) (134855)

Prof-C 5744065 5050207 4486134 5496499 4971050 4828607 4263956 4408656 3882100

(1722353) (1479568) (1253352) (1644108) (1496168) (1412805) (1201613) (1258406) (1074960)

Prof-G 31332 24458 41337 31358 31522 25029 40462 25152 38926

(27547) (16902) (75824) (27509) (27555) (16897) (72152) (16914) (65788)

Prof-O 177224 147526 118308 171750 157644 142881 113574 132302 105054

(61449) (53369) (41704) (59569) (55180) (51355) (40192) (46892) (36948)

Prof-Tm 6687940 5878775 5213269 6525330 6166882 5751135 5082310 5521111 4897594

(2003296) (1740399) (1474780) (1909952) (1735726) (1661963) (1414202) (1482162) (1266648)

Prof-W N/A -190964 -439281 N/A N/A -159404 -380460 -94423 -251475

(44621) (165098) (33663) (142272) (13788) (94894)

Prof-AG 6687940 5878775 5213269 6525330 6166882 5751135 5082310 5521111 4897594

(2003296) (1740399) (1474780) (1909952) (1735726) (1661963) (1414202) (1482162) (1266648)

Tax-N N/A N/A N/A 0 0 0 0 0 0

(0) (0) (0) (0) (0) (0)

Tax-C N/A N/A N/A 892412 2745829 878280 862995 2702494 2655253

(34626) (106562) (32596) (29603) (100347) (91085)

Tax-G N/A N/A N/A 72362 222749 58186 49440 179112 152324

(35706) (109906) (25739) (20643) (79200) (63569)

Tax-O N/A N/A N/A 24626 75679 21559 18128 66147 55585

(8022) (24600) (6980) (5846) (21408) (17897)

Tax-AG N/A N/A N/A 989400 3044257 958025 930562 2947753 2863163

(74703) (229841) (62919) (53843) (193599) (165653)
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